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1. INTRODUCTION 

The cable model of electrical conduction in neurons is central to our understanding of 
information processing in neurons. The conduction of action potentials in axons has been 
modeled as a nonlinear excitable cable (Hodgkin and Huxley, 1952), and the integration 
of postsynaptic signals in dendrites has been studied with analytic solutions to passive 
cables (Rall, 1977). Recently, several groups have examined the possibility of more 
complex signal processing in dendrites with complex morphologies and excitable mem- 
branes by numerical integration of the cable equations (Shepherd et al., 1985; Koch et 
al., 1983; Rall and Segev, 1985; Perkel and Perkel, 1985). 

The cable equation is based on an electrical conductance model in which driving 
forces arising from ionic concentration differences across the membrane are represented 
by batteries in series with conductances. This model can be derived as an approximation 
to the Nernst-Planck equation for electrodiffusion. In this chapter we introduce an elec- 
trodiffusion model of electrical conduction in one dimension-along the longitudinal 
dimension of a thin process. In this preliminary report we determine conditions under 
which the electrical conductance model may not be valid. Complications such as cyto- 
plasmic cisternae, membrane pumps, and ionic buffers will be considered in a later paper. 

2. LIMITATIONS OF THE ELECTRICAL CONDUCTANCE MODEL 

The membrane battery potentials in the electrical conductance model are usually 
obtained from the Nernst equation and are considered constants. This is a good approx- 
imation in the squid giant axon and large neurons but may introduce errors if the con- 
centrations of some ions change significantly. This is more likely to occur in small 
processes and during synaptic events in small structures such as spines (Rall, 1978; Koch 
and Poggio, 1983). 

A second limitation of the electrical conductance model is in the treatment of lon- 
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gitudinal current spread within neurons. Only the potential gradient in the cytoplasm is 
considered, and not concentration gradients. This is usually a good assumption, but the 
concentration gradients can be large when spatial compartments are small and for some 
ions like Ca2+, whose concentration can change dramatically under some circumstances. 

One additional observation is that different ions may have different concentration- 
dependent cytoplasmic resistivities, but in the electrical conductance model only the total 
cytoplasmic resistivity is usually considered. 

In the following sections we first derive a set of equations that govern the electro- 
diffusion of ions in thin cables and then present numerical solutions to these equations 
for an excitatory postsynaptic potential on a dendritic spine. 

3. ELECTRODIFFUSION MODEL 

The movement of ions in neurons is governed by the Nernst-Planck equation (Jack 
et al., 1975): 

where V is the potential, j, is the flux of ionic species i (number of particles per unit 
area), Di is the diffusion constant, ni is the concentration, and the constant a, is defined 
as 

with 

a = RTIF (3) 

where z, is the charge per ion, R is the gas constant, F is the Faraday constant, and T is 
the temperature. The ionic concentrations and ionic currents must additionally satisfy the 
continuity equation: 

The Nernst-Planck equation will be applied to a cylinder of diameter d. We assume 
that the longitudinal current and ionic concentrations are uniform across the transverse 
cross section of the cylinder and that the radial current is independent of angle around 
the axis of the cylinder. These assumptions reduce the problem of electrodiffusion to a 
one-dimensional problem along the axis of the cylinder. The constant-field approximation 
is made for the transverse currents passing through the cylinder (Goldman, 1943). The 
equations can be written in cylindrical coordinates and reduced to a single equation for 
the concentration as a function of the distance along the z axis of a cylinder: 

where Pi is the permeability of the membrane and n y '  is the concentration of ionic species 
i outside the membrane. The three terms on the right-hand side of this equation are, 
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respectively, the contributions from pure diffusion, the potential gradient, and the mem- 
brane current. *This equation must be supplemented by an additional constraint between 
the membrane potential and the ionic concentrations. We adopt the same capacitative 
model of the membrane used in the electrical conductance model: 

where V(0) is the initial voltage, ni(0) are the initial ionic concentrations, and the mem- 
brane has capacitance c, per unit area. 

If branches are allowed, then these equations must be solved on a tree rather than 
a line. At any jump in diameter, the continuity equation must be satisfied across the 
jump: 

where the diameter of the process is dl on one side and d2 on the other side. This implies 
that both the voltages and the ionic concentrations are continuous. However, by equation 
6, the voltage will not be continuous at a diameter jump if the ionic concentrations are 
continuous; hence, the voltage at the jump is set to the average of the voltages on either 
side. 

The coupled differential equations were solved by converting them to finite difference 
equations and solving them by an explicit method. The solutions at diameter jumps were 
obtained by solving the coupled nonlinear algebraic equations derived from the matching 
conditions, equation 7. The calculation was performed for space and time steps of suc- 
cessively smaller size, and the values reported ,were ones for which further decrease to 
the step sizes made less than 2% difference to the solution. 

4. RELATIONSHIP BETWEEN THE ELECTRODIFFUSION MODEL 
AND THE ELECTRICAL CONDUCTANCE MODEL 

In large neurons, the internal and external ionic concentrations remain approximately 
constant during a transient excitation. The contribution of the diffusion of ions within 
the neuron then becomes negligible, and the longitudinal current is purely resistive. It 
can then be shown that 

where R, is the total resistivity of the cytoplasm and Ri are the ionic resistivities for each 
species of ion. For the squid cytoplasm ([Kf] = 400 rnM, [Na+] = 50 mM) and for 
the Di given in Table I, the estimated resistivities are R, = 29.7 fi cm, RK = 33.4 fi 
cm, and RN, = 267 fi cm. There is a significant difference between the resistivities of 
the individual ionic species. 
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TABLE I. Parameters for Electrodiffusion Model in Figs. 2, 3, and 4 
* 

Symbol Value Parameter 

1.96 x cm2/sec 
1.33 x 10-5cm2/sec 
3.64 x c d s e c  
6.07 x lo-' c d s e c  
140 mM 

12 mM 
4 mM 

145 mM 
6.07 x c d s e c  
0.25 x sec 
20°C 
2 pF/cm2 

Diffusion coefficient for K +  
Diffusion coefficient for Na+ 
Resting permeability of K +  
Resting permeability of Na+ 
Initial internal K+ concentration 
Initial Na+ concentration 
External K+ concentration 
External Na+ concentration 
Maximum Na+ permeability of spine 
Time to reach peak permeability 
Temperature 
Membrane capacitance per unit area 

5. ELECTRODIFFUSION MODEL OF A DENDRlTlC SPINE 

Many vertebrate and invertebrate neurons receive synaptic inputs on spines (Coss 
and Perkel, 1985). Because of the small size of dendritic spines, postsynaptic potentials 
can be accompanied by significant changes in the internal ionic concentrations. In this 
section we simulate an excitatory postsynaptic potential on a spine using the electrodif- 
fusion model and compare the results with the conventional electrical conductance model. 

The morphology of the dendritic spine used in the simulations is shown in Fig. 1. 
The synaptic input was modeled by a transient change in the Na+ permeability of the 
membrane 

where PM is the maximum Na+ permeability and tp is the time to reach peak (Kock and 
Poggio, 1983). 

With the parameters of the model given in Table I, the resting potential was - 78 
mV. The total surface area of the spine head was 0.65 pm2. The membrane potential 

D e n d r i t e  

0 

Spine 

FIGURE 1. Geometry for the electrodiffusion model of a dendritic spine. The spine was in the center 
of a dendrite with a total length of 300 pm and a diameter of 1 pm; the spine neck was 1 pm long 
and 0.1 pm in diameter; the spine head was 0.69 pm long and 0.3 prn in diameter. Sample points in 
the dendrite were 10 pm apart, and the integration time step was 10-7sec; in the spine head and neck 
the spacing was 0.173 pm and 0.167 pm, respectively, and the time steps were sec. The model 
had a total of 41 sample points: 31 in the dendrite, six in the spine neck, and four in the spine head. 
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FIGURE 2. Excitatory postsynaptic potential modeled by 
electrodiffusion in a dendritic spine. The membrane po- 
tential relative to the resting potential is given as a func- 
tion of time for the (1) middle of the spine head, (2) middle 
of the spine neck, (3) dendritic shaft at the base of spine, 
(4) dendrite 50 pm from spine, and (5) dendrite 150 pm 
from spine. msec 

during the simulated excitatory postsynaptic potential is shown in Fig. 2, and the changes 
in the ionic concentrations of sodium and potassium are shown in Fig. 3.  There is an 
increase in the sodium concentration inside the spine head of over threefold and a reduction 
in the concentration of potassium of 20%. In Fig. 4, the maximum response is shown as 
a function of the maximum sodium permeability during the excitatory postsynaptic po- 
tential. 

The parameters given in Table I1 for the electrical conductance model were chosen 
so that the resting and equilibrium potentials and the resting currents of the electrodiffusion 
model closely matched those in the electrical conductance model. The transient change 
in the membrane conductance of Naf at the spine head during the synaptic input was 
modeled by 

where GM is the maximum Naf conductance. 

msec msec 

FIGURE 3, Ionic concentration changes for (a) Na+ and (b) K+ in a dendritic spine during an excitatory 
postsynaptic potential using the electrodiffusion model. Concentrations are given relative to the resting 
levels (see Table I) in the (1) middle of the spine head, (2) middle of the spine neck, and (3) dendritic 
shaft at the base of the spine. 
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FIGURE 4. Maximum response during an excitatory post- 
synaptic potential for (1) the electrical conductance model 
and (2) the modified electrical conductance model as a 
function of the maximum conductance change and for (3) 
the electrodiffusion model as a function of the maximum 
permeability. The response functions for all three models 
are given at two locations: (A) the spine head and (B) the 
dendritic shaft at the base of the spine. 

For small conductance changes, the two models predicted similar responses, as shown 
in Fig. 4. However, for large conductance changes, there were significant differences 
between the responses predicted by the electrical conductance model and the electrodif- 
fusion model, especially at the base of the dendritic spine. 

The saturation of the response in the electrical conductance model results from the 
approach of the membrane potential toward the sodium equilibrium potential. This sat- 
uration occurs at a lower membrane potential in the electrodiffusion model because of 
the increase in the internal sodium concentration and concomitant decrease of the sodium 
equilibrium potential. 

The discrepancy between the two models can be reduced by using conductance 
changes in the electrical conductance model to match the membrane currents in the 
electrodiffusion model rather than the conductance changes given by equation 11. How- 
ever, this procedure requires a complete solution of the electrodiffusion equations first. 
An alternative modification of the electrical conductance model is presented in the next 
section that is computationally less demanding, 

6. MODIFICATIONS TO THE ELECTRICAL CONDUCTANCE MODEL 

In the conventional electrical conductance model, the ionic concentrations inside the 
neuron are constant during changes in the membrane potential. This assumption can be 
relaxed by making several changes to the formalism: 

1. Calculate the concentration of each ionic species in each compartment from the 
ionic currents flowing between compartments. 

TABLE II. Parameters for Electrical Conductance Model in Fig. 4 

Symbol Value Parameter 

5.56 X 10" S/cm 
5.56 x 10" S/cm 
2.31 x 104S/cm2 
1.94 x S/cm2 
-89.8 mV 
62.9 mV 
1.26 X lO-'S 
0.25 x 10" sec 
2 pF/cm2 

Cytoplasmic conductance of K+ 
Cytoplasmic conductance of Na+ 
Resting membrane conductance of K+ 
Resting membrane conductance of Na+ 
K+ equilibrium potential 
Na+ equilibrium potential 
Maximum sodium conductance of spine 
Time to reach peak conductance 
Membrane capacitance per unit area 
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2. Compute the new equilibrium potentials during each time step and update the 
membrane batteries. 

3. Replace the longitudinal resistance between compartments with parallel con- 
ductances in series with batteries and treat them in the same way as membrane 
conductances. 

This modified electrical conductance model applied to the dendritic spine model in 
Fig. 1 gave qualitatively similar results for the changes in ionic concentrations compared 
with the electrodiffusion model. Without the above modifications, the predicted ionic 
concentration changes were markedly in error, in some cases having the wrong sign. The 
modified electrical conductance model also made predictions for the maximum responses 
that were qualitatively similar to those of the electrodiffusion model, with quantitative 
discrepancies of less than 10% over the entire range of conductance changes, as shown 
in Fig. 4. 

7. DISCUSSION 

In most circumstances, the electrical conductance model of electrical conduction in 
neurons gives accurate predictions for membrane potentials during transient electrical 
events. In this chapter we have developed an electrodiffusion model of electrical con- 
duction for thin processes that reduces to the electrical conductance model for processes 
with large diameters. 

This one-dimensional electrodiffusion model was used to study the changes in con- 
centration of ions in dendritic spines during excitatory postsynaptic potentials. During a 
conductance change for Na+ at the distal tip of a spine, the concentration of sodium can 
transiently increase by threefold, and the potassium concentration can decrease by 20%. 
Thus, significant errors can be made in estimating the membrane potential and concen- 
tration changes with the electrical conductance model if the effects of diffusion are not 
taken into account. We suggest a modification of the electrical conductance model to 
minimize these errors. 

In a later paper we will extend the present model by including membrane pumps, 
buffers, and other ions, such as Ca2+, that may also be important (Simon and Llinas, 
1985; Fogelson and Zucker, 1985). For some problems it may be necessary to include 
spatially inhomogeneous diffusion within neurons, which would require the solution of 
the Nernst-Planck equation in three dimensions. 
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