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Dynamical ergodicity DDA reveals causal
structure in time series
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ABSTRACT

Determining synchronization, causality, and dynamical similarity in highly complex nonlinear systems like brains is challenging. Although
distinct, these measures are related by the unknown deterministic structure of the underlying dynamical system. For two systems that are not
independent on each other, either because they result from a common process or they are already synchronized, causality measures typically
fail. Here, we introduce dynamical ergodicity to assess dynamical similarity between time series and then combine this new measure with
cross-dynamical delay differential analysis to estimate causal interactions between time series. We first tested this approach on simulated data
from coupled Rössler systems where ground truth was known. We then applied it to intracranial electroencephalographic data from patients
with epilepsy and found distinct dynamical states that were highly predictive of epileptic seizures.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0063724

Epilepsy is the fourth most common chronic neurological dis-
order and affects more than 50 million people worldwide. It
is characterized by seizures, periods of unusual behavior, sen-
sations, and, in some cases, loss of awareness. Unpredictable
seizures are dangerous and disruptive. Drug resistant seizures
require intervention to localize and remove the brain regions
where the seizures are initiated. Seizure prediction could allow
less invasive intervention but current prediction methods are
unreliable. Synchronization and causality are two major aspects
of seizures: Causal interactions between cortical areas drive syn-
chrony, and extreme synchrony leads to seizures. Synchroniza-
tion and causality are related by dynamical similarity. We intro-
duce dynamical ergodicity, a measure of dynamical similarity that
is effective under non-stationary conditions that include phase
shifts. Dynamical ergodicity is studied first in a chaotic model

system and is then applied to intracranial electroencephalo-
graphic (iEEG) recordings from epilepsy patients. We report
promising results that may lead to a better understanding of the
mechanisms underlying epileptic states and better methods to
predict and prevent seizures.

I. INTRODUCTION

Chaos theory and ergodic theory are both motivated by related
questions concerning dynamical systems.5,10,23 In the classic chaos
theory, the dynamics of the system is governed by deterministic
dynamical equations without noise or random perturbations. Thus,
the statistics of these systems are generated solely by dynamics. In
a chaotic system, phase space trajectories at nearby points diverge
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exponentially with a positive Lyapunov exponent. Ergodic theory is
concerned with whether the trajectory of a dynamical system even-
tually covers its phase space over time. The Poincaré recurrence
theorem8,9,27,28 states that an ergodic system will, after a sufficiently
long but finite time, return to a state arbitrarily close to its initial
state. Under certain conditions, the time average of a function along
the trajectories of an ergodic system exists almost everywhere and is
related to the space average.

Here, the concept of ergodicity is used as the basis for estimat-
ing the dynamical similarity of data from multiple sources and is
used to improve causality estimates. In applying ergodicity to time
series, the temporal average is replaced by a delay differential analy-
sis (DDA) feature for each time series (e.g., EEG recording channels)
and the ensemble average is taken over the DDA features from all the
time series. If the two are similar, the time series is part of an ergodic
or dynamically similar group of time series. This then can be used
to estimate the reliability of our causality measure, CD-DDA (cross-
dynamical DDA).16 CD-DDA, along with most causality measures,
relies on comparing a model of one time series with a model that
includes inputs from another time series. A reduction of the error is
interpreted as causal information flow between the two systems that
generate the two time series. If two systems are very similar or are
already synchronized, they cannot be considered independent and
the causality measure might be unreliable.

CD-DDA was introduced in Ref. 16 (and references therein)
and put in context to Granger causality (GC),12 the work of Wiener,37

alternative and nonlinear Granger causality approaches,1–3,6,7,13,14

transfer entropy (TE),4,33 and convergent cross mapping (CCM).35

More approaches and reviews for causality detection can be found in
the study by Smirnov34 and the focus issue in Chaos.30,38 In Ref. 16,
we introduced CD-DDA and critically compared it to GC, TE, and
CCM, and CD-DDA was superior for causality detection.

We first explore how the similarity of systems and synchroniza-
tion affect causality estimates for unidirectionally coupled Rössler
systems where we know the ground truth. The second applica-
tion is to obtain intracranial electroencephalographic (iEEG) data
from an epilepsy patient that was studied previously with DDA.17

This patient exhibited chimera states in the pre-ictal period before
seizures, during which different channels exhibited chaotic and syn-
chronous activity simultaneously. We show that dynamical ergodic-
ity in combination with CD-DDA can detect distinct state changes
that are indicative for pre-, post-, and inter-ictal data. Dynami-
cal ergodicity revealed a new pre-pre-ictal state that preceded all
seizures. These states lasted from minutes to hours. Since our anal-
ysis extended to days of recordings with a high temporal resolution,
we were able to find causal connections between brain areas in the
pre-pre-ictal states. This is a proof of concept example that distinct
dynamical states may exist in some patients. We are currently ana-
lyzing over 100 patients with more than 1000 seizures. The results
from this analysis will be published in a medical journal.

The paper is organized as follows. Section II introduces dynam-
ical ergodicity and puts it into the context of previously introduced
flavors of DDA. Section III applies dynamical ergodicity to uni-
directionally coupled Rössler systems and shows how dynamical
ergodicity can be used to improve the reliability of causality esti-
mates. In Sec. IV, we then apply the same analysis to iEEG data
from a patient with epilepsy and show how dynamical ergodicity

together with causality can identify multiple states that precede all
the seizures with high confidence. These results are summarized in
Sec. V.

II. DDA AND DYNAMICAL ERGODICITY

DDA combines differential embeddings with linear and non-
linear nonuniform functional delay embeddings24,32,36 to relate the
current derivatives of a system to the current and past values of
the system variables.15,16,20 Inspired by Planck’s “natural units,”26

the DDA model maps experimental data onto a set of natural
embedding coordinates.

For DDA models with two time delays and three terms to
reduce complexity, the general nonlinear DDA model is

u̇(t) =

3
∑

i=1

ai u(t − τ1)
mi u(t − τ2)

ni + ρu = Fu + ρu, (1)

where u(t) is a time series and mi, ni, τ1,2 ∈ N0 and a degree
mj + nj ≤ 4 of nonlinearity. We then use the coefficients ai and the
least square error ρu between left- and right-hand sides in Eq. (1) as
features. Note, that we explicitly added ρu to highlight its use in the
dynamical ergodicity DDA measure introduced below. The deriva-
tive on the left side is computed using a five-point center deriva-
tive algorithm.21,22 The coefficients ai are estimated with numerical
singular value decomposition (SVD) to minimize the least square
error.29

DDA is a two step process. (i) For a new class of data (e.g.,
epilepsy iEEG data) the best DDA model [i.e., the coefficients mi

and ni in Eq. (1) as well as the delays or fixed parameters τ1,2] that
best fits the overall dynamical properties of the system has to be
found. This can be done by supervised (maximizing the classifi-
cation performance) or unsupervised (minimizing the least square
error) structure selection from a list of candidate models (see, e.g.,
Refs. 19 and 20). This step does not have to be repeated for data
from the same data class. (ii) As soon as a DDA model is fixed,
data can be analyzed by fitting the data to that model and estimat-
ing the features or free parameters ai in Eq. (1). We usually estimate
the parameters from the data without any pre-processing or filter-
ing except normalizing each data window to zero mean and unit
variance.

DDA has four flavors (see Fig. 1):

1. Single trial or channel DDA (ST-DDA)19 is the classical vari-
ant developed for analyzing single time series. It can be used for
detection and classification problems to assess dynamical differ-
ences in data, to find the DDA model that fits the data best, and
to assess observability.11

2. Cross trial or channel DDA (CT-DDA)18 determines the overall
dynamics of multiple time series simultaneously.

3. Cross-dynamical DDA (CD-DDA)16 measures causality between
two time series.

4. Dynamical ergodicity DDA (DE-DDA) is a combination of
ST-DDA and CT-DDA that is used to assess dynamical ergod-
icity or similarity from data in the following way:
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FIG. 1. Flavors of DDA: ST-DDA is used for single time series. CT-DDA combines
multiple time series to estimate the combined features. DE-DDA combines these
two measures to assess dynamical ergodicity. CD-DDA detects causality from two
time series.

Consider an ST-DDA model that is applied to a time series u(t) of
length L,

u̇(t) = a1 u(t − τ1) + a2 u(t − τ2) + a3 u(t − τ1)
2

= a1 uτ1 + a2 uτ2 + a3 u2
τ1

. (2)

The free parameters (features) A = (a1, a2, a3) are estimated by
solving the equations for A using SVD,29
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(3)
u̇ = Mu A.

Note that Mu is an (L × 3) matrix. The additional feature is the error,

ρ =

√

√

√

√

1

L

L
∑

k=1

(Mu A − Pu)
2
k, (4)

yielding Eq. (1),

u̇ = Mu A + ρa = Fu + ρu. (5)

Note that the error sometimes is denoted by ρa or ρu depending on
whether the emphasis is on the time series u or the features A.

Multiple time series can be analyzed with CT-DDA. For two
time series, u1(t) and u2(t), the features can be either computed for
each time series separately, resulting in (A, ρa)1 and (A, ρa)2, or in a

FIG. 2. DE-DDA combines ST DDA and CT DDA to test for
dynamical ergodicity. An example with six time series is shown,
extending the dimensionality in Eq. (6).

Chaos 31, 103108 (2021); doi: 10.1063/5.0063724 31, 103108-3

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 3. A chaotic Rössler system driving a periodic Rössler system with no noise. In the top plot, the attractors are shown for different coupling strengths. The colors change
from blue to red with increasing coupling strength. In the bottom plots, C denotes Cuv in cyan and Cvu in magenta.

combined way by solving the equation

(

u̇1

u̇2

)

=

(

Mu1

Mu2

)

B, (6)

for the features B = (b1, b2, b3). In (6), the vector
(

Pu1
Pu2

)

has 2L ele-
ments since the two time series u1(t) and u2(t) are each of length
L.

(

Mu1
Mu2

)

is a (2L × 3) matrix and Mu1 and Mu2 each have the same
form as Mu in Eq. (3). Therefore, B = (b1, b2, b3) is a vector with
three elements. This can be extended to any number of time series
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(see Fig. 2 for the example of six time series). Note that for ST-DDA,
there are as many feature sets (A, ρa) as there are time series, while
for CT-DDA there is only one combined feature vector (B, ρb).

CT-DDA only makes sense if the dynamics in the two time
series u1(t) and u2(t) are similar and therefore can be used to test for
dynamical similarity. This motivates dynamical ergodicity: Consider
two time series u1(t) and u2(t) and the two corresponding ST-DDA
feature vectors (A, ρa)1 and (A, ρa)2. From CT-DDA, there is one
combined feature vector (B, ρb). The mean of the two ST-DDA
errors ρa and the CT-DDA error ρb should be similar if the ana-
lyzed time series have a similar dynamics and the quotient should be
close to one. Dynamical Ergodicity as used in DE-DDA is defined as

E =

∣

∣

∣

∣

ρa

ρb
− 1

∣

∣

∣

∣

. (7)

Figure 2 shows an example with six time series. The smaller E is, the
more similar is the dynamics of the time series under investigation.
If both time series are identical, E will be zero. Furthermore, E is
invariant to non-stationarities and phase shifts.

For recordings from patients with epilepsy, it is important to
group data from different channels according to their dynamics
regardless of phase shifts or non-stationarities in the data. For exam-
ple, at the onset of a seizure, only data from a few channels might
share the same dynamics.

Dynamical ergodicity can be further used to check the reliabil-
ity of causality. Here, we use CD-DDA as introduced in Ref. 16 to
assess causality. For CD-DDA, we consider two dynamical systems
X and Y resulting in the time series u(t) and v(t). The first step is to
compute a set of features C = (c1, c2, c3) with

u̇ = Mu C + ρu, (8)

where u̇ is a vector of length L and the delay matrix Mu is a (L × 3)
matrix. To check if there is a causal connection from Y to X, we add
the delay matrix from the other time series, Mv, to the equation

u̇ = (Mu Mv) E + ρuv. (9)

(Mu Mv) now is a (L × 6) matrix resulting in E = (e1, e2, . . . , e6) with
six elements. If there is a causal connection from Y to X, then the
last three elements of E will make the model better and the error ρuv

should decrease. If there is no causal connection from Y to X, then
the last three elements of E will be irrelevant and the error ρuv should
not change. The difference

Cuv = |ρu − ρuv | (10)

can, therefore, be used to quantify causality from Y to X. A causal
connection from X to Y can be tested in the same way, starting with

v̇ = Mv D + ρv, (11)

where v̇ is a vector of length L and Mv is a (L × 3) matrix. Once
again, the second delayed matrix Mu can be added to the equation,

v̇ = (Mu Mv) F + ρvu. (12)

(Mu Mv) is the same combined (L × 6) delay matrix as in Eq. (9)
resulting in F with six elements. Whether the first three terms of F

are relevant or not tells us whether there is a causal connection and

Cvu = |ρv − ρvu | (13)

is used to quantify causality from X to Y. However, this and all
other causality measures assume that the two dynamical systems are
not similar or synchronized to each other. A better causality mea-
sure can, therefore, be obtained by multiplying these two measures:
C ∗ E , where C is Cuv or Cvu.

III. UNIDIRECTIONALLY COUPLED RÖSSLER SYSTEMS

Two Rössler systems were unidirectionally coupled by modify-
ing the system in Ref. 25 as explained in Ref. 16,

R1







ẋ1 = −ω1 y1 − z1,
ẏ1 = x1 + a1 y1,
ż1 = b − cz1 + z1x1,

R2







ẋ2 = −ω2 y2 − z2 + σ(x1 − x2),
ẏ2 = x2 + a2 y2,
ż2 = b − cz2 + z2x2,

(14)

with b = 0.2 and c = 10. We consider the following two cases: (1)
a chaotic Rössler system driving a periodic Rössler system and (2) a
periodic Rössler system driving a chaotic Rössler system. In the first
case, we set ω1 = 1.030 225, ω2 = 0.970 225, and a1 = a2 = 0.15. In
the second case, we set ω1 = 0.970 225, ω2 = 1.030 225, a1 = 0.15,

FIG. 4. A chaotic Rössler system driving a periodic Rössler system with high
noise. The colors change from blue to red with increasing coupling strength. C
denotes Cuv in cyan and Cvu in magenta. White noise with SNR = 10 dB was
added.
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FIG. 5. A periodic Rössler system driving a chaotic Rössler system with no noise. In the top plot, the attractors are shown for different coupling strengths. The colors change
from blue to red with increasing coupling strength. C denotes here both Cuv (in cyan) and Cvu (in magenta).

and a2 = 0.3. The coupling strength σ was varied between 0.001
and 0.25 in the first case and between 0.001 and 0.55 in the second
case, each in 120 equally spaced steps. The initial conditions were
the same for all numerical experiments. The integration step size
δt was set to 0.05 with a transient of 25 000 time points discarded.

DDA was run with a window length of 6000 δt and a window shift
of 1554 δt resulting in 29 windows, the same as in Ref. 16. The same
DDA model as in Ref. 16 was used,

Fu = a1 uτ1 + a2 uτ2 + a3 u3
τ1

, (15)
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FIG. 6. A periodic Rössler system driving a chaotic Rössler system with high
noise. C denotes here both Cuv (in cyan) and Cvu (in magenta). White noise with
SNR = 10 dB was added.

with uτj = u(t − τj), u = x1,2, and the adjusted delays τ1 = 64 δt and
τ2 = 18 δt. The numerical derivatives were estimated with a cen-
ter derivative as explained in Refs. 21 and 22. We further show the
noise-free cases and the case of added white noise to all signals with
a signal-to-noise ratio (SNR) of 10 dB.

A. Chaotic Rössler system driving a periodic Rössler
system

The driven attractors for ω1 = 1.030 225, ω2 = 0.970 225, and
a1 = a2 = 0.15 in Eq. (14) are shown in Fig. 3 with no noise. The
colors change in the upper panel with the coupling strength σ from
blue to red. The CD-DDA plot, showing C, for the noise-free case
is similar to the one in Ref. 16. C denotes here both Cuv and Cvu for
the corresponding direction of causality. Note the abrupt onset of
synchronization at σ = 0.15.

Two problems are apparent in Fig. 3: For small coupling
strengths, causality cannot be detected and the direction of causality
is reversed when the two systems are synchronized. In the high-noise
case, causality cannot be detected for small coupling strengths and is
even reversed after synchronization.

The dynamical ergodicity E in Eq. (7) is plotted in the mid-
dle panels of Figs. 3 and 4. E is small when the two time series
have similar dynamics. This is the case when the coupling strength
is small or when they are synchronized. These are exactly the cases
when the causality C (Cuv and Cvu) is ambiguous. One possible solu-
tion is to use the product C ∗ E , as shown in the bottom panels.
Without noise, this is very small for the cases where causality makes
little sense. For the high-noise case, there is too much noise in the
two time series to assess causality because they are similar. Such
cases always should be viewed with caution.

B. Periodic Rössler system driving a chaotic Rössler
system

The driven attractors for ω2 = 1.030 225, ω1 = 0.970 225,
a1 = 0.15, and a2 = 0.3 and no noise are shown in Fig. 5. The cou-
pling strength σ was varied between 0.001 and 0.55 in 120 equally
spaced steps. In the upper panel, the colors change with the cou-
pling strength σ from blue to red. The driven attractors with noise
are shown in Fig. 6 (SNR = 10 dB). In this example, causality C is
detected in the correct direction, except for small coupling strengths

FIG. 7. Locations of the implanted iEEG electrodes. The onset channels, as determined by a neurologist, are highlighted in blue. Recordings from the two hemispheres are
stacked and displayed in the top and bottom portions of the plots in subsequent figures.
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FIG. 8. Analysis of 77 channels 10min before to 10min after onset of seizure 4. The panels show ρ and THOSVD analysis of E , E ∗ Cxy , and E ∗ Cyx . For ρ (upper plot),
the colors represent the value of ρ. For the remaining plots, the colors represent communities (see text). The vertical lines near the center indicate the seizure onset as
marked by a neurologist. The onset channels are in the red region of the third panel from the top preceding the seizure.
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FIG. 9. 72 h of data; 77 channels; ρ and THOSVD analysis of E , E ∗ Cxy , and E ∗ Cyx are shown.
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FIG. 10. Seizures 3 and 4. ρ and THOSVD analysis of E , E ∗ Cxy , and E ∗ Cyx are shown.
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and after the systems synchronize. Again, dynamical ergodicity E

helps identify when causality makes sense.

IV. CAUSALITY AND DYNAMICAL ERGODICITY IN
EPILEPTIC SEIZURES

The causality measures introduced above are applied here
to recordings from a patient with epilepsy that were analyzed
previously in Ref. 17 using same DDA model,

u̇ = a1uτ1 + a2uτ2 + a3u
4
τ1

+ ρu = Fu + ρu, (16)

where uτi = u(t − τi) and u(t) are iEEG data. The delay pair is
τ = (7, 10) δt, where δt = 1

fs
with the sampling rate fs = 500 Hz.

The choice of this model is explained in Refs. 17 and 19. The
patient demographics and characteristics are described in Ref. 19.
All data analyses were performed under protocols monitored by the
Massachusetts General Hospital according to National Institutes of
Health guidelines. Figure 7 shows the schematic of the implanted
iEEG electrode locations for 77 recording sites.

The ST-DDA features for each channel were computed sepa-
rately for sliding windows with a length of 250 ms and a window shift
of half that length. Additionally, CT-DDA as well as the CD-DDA
features were computed for each pair of channels, resulting in 2926
pairwise channel combinations. There were three (77 × 77) matrices
(E , E ∗ Cxy, and E ∗ Cyx) for each 250 ms time window. To reduce the
dimension by one, truncated higher-order SVD (THOSVD)19 was
performed on 100 time windows (about 13 s) on each of these matri-
ces and then all channels that correlated to the same singular values
were identified and given the same color in the figures. Each color,
therefore, represents a community.31

Figure 8 shows analysis of the recordings 10 min before to
10 min after the onset of seizure 4. The channels were not sorted.
A chimera state identified for this patient before this seizure17 has
lighter/whiter colors in the upper plot and belongs to the same com-
munity shown in blue in the ergodicity plot, second from the top.
The synchronized channels belong to a different community and are
shown in orange. The brief green vertical regions are micro events.
During the seizure, the kaleidoscope of colors indicate dynamical
diversity. After the seizure, most channels become synchronized, as
indicated by the vertical red region, which is followed by a shift to
another state.

In Fig. 9, a much longer 72-h recording is shown comprising
seven seizures, and in Fig. 10, an expansion is shown 10 min before
the third seizure to 10 min after the onset of seizure 4. The orange
and blue regions are chimera states (explained in detail in Ref. 17)
that occur before each of the seven seizures and last for up to 2 h.
Importantly, before the chimera states, there are three distinct states
of about 10 min each (seen most clearly in Fig. 10). Exactly, the
same sequence of states occurs before each seizure and varies only
in duration.

This newly identified pre-pre-ictal state before the orange/blue
chimera state also appears as a decrease of the blue community
around channel 10 in the E ∗ Cxy plot (third from the top) in Fig. 9
and at 109.5 h in Fig. 10. Red regions increase as blue regions
decrease. These blue channels (left posterior temporal, Fig. 7) are
outside the seizure onset zone but enable the chimera pre-ictal states.
The red channels are the onset channels (right posterior frontal,

Fig. 7). In Fig. 9, the two hemispheres (top half and bottom half)
show clear differences in the two lower causality plots but not in the
top two plots, reflecting the ability of the causal measure to detect
the origin of the seizure in one of the hemispheres.

V. DISCUSSION

Dynamical ergodicity E was introduced as a measure of dynam-
ical similarity that is invariant to non-stationarities. We then applied
E to simulated data from two coupled Rössler systems. Chan-
nels that are too similar or are synchronized cannot be assessed
for causality because these channels are not independent and
already share information. By identifying these conditions, dynami-
cal ergodicity can add reliability to any causality measure by focusing
analysis on those channels that are more likely to carry causal
information. After successfully validating this new causal measure
on simulated data, we then applied this analysis on 72 h of iEEG
recordings from a patient having seven seizures.

A previously identified pre-ictal chimera state17 was preceded
by a newly identified pre-pre-ictal state that occurs away from
the onset channels and has high predictive power for the pre-ictal
chimera state. The cortex enters the pre-pre-ictal state early enough
for feedback intervention to reduce the severity or possibly pre-
vent the predicted epileptic seizure. These findings from one patient
are a proof of concept. Further analysis of recordings from a larger
cohort of patients (over 1000 seizures from around 100 patients) will
explore the diversity of seizures. A paper is in preparation and will
be published in a medical journal.

The ability to detect multiple cortical states and the transitions
between them makes it possible to study the dynamic regulation
of the cortical activity that occurs during sleep stages and levels of
arousal and attention. DDA can be computed in real time and is
insensitive to artifacts, opening up the possibility of closing the loop
with feedback.
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