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Dynamic Remapping 
Alexandre Pouget and Terrence J. Sejnowski 

Introduction The encoding of saccadic eye movements in the superior collic- 

The term dynamic remapping has been used in many different 
ways, but one of the clearest formulations of this concept comes 
from the mental rotation studies by Georgopoulos et al. (1989) (see 
also MOTOR CORTEX: CODING AND DECODING OF DIRECTIONAL 
OPERATIONS). In these experiments monkeys were trained to move 
a joystick in the direction of a visual stimulus or 90" counterclock- 
wise from it. The brightness of the stimulus indicated which move- 
ment was required on a particular trial; a dim light corresponded 
to a 90" movement and a bright light to a direct movement. An 
analysis of reaction time suggested that, by default, the initial motor 
command always pointed straight at the target and then continu- 
ously rotated if the cue indicated a 90" rotation, an interpretation 
that was subsequently confirmed by single unit recordings. 

The term remapping is also commonly used whenever a sensory 
input in one modality is transformed to a sensory representation in 
another modality. The best-known example in primates is the re- 
mapping of auditory space, from head-centered in the early stages 
of auditory processing to the retinotopic coordinates used in the 
superior colliculus (Jay and Sparks, 1987). This type of remapping, 
equivalent to a change of coordinates, is closely related to senso- 
rimotor transformations. It does not have to be performed over time 
but could be accomplished by the neuronal circuitry connecting 
different representations. 

This review is divided into three parts. In the first part, we briefly 
describe the types of cortical representations typically encountered 
in dynamic remapping. We then summarize the results from several 
physiological studies where it has been possible to characterize the 
responses of neurons involved in temporal and spatial remappings. 
Finally, in the third part, we review modeling efforts to account for 
these processes. 

Neural Representation of Vectors 
A saccadic eye movement toward an object in space can be rep- 
resented as a vector S whose components S, and S,, correspond to 
the horizontal and vertical displacement of the eyes. Any sensory, 
or motor, variable can be represented by a similar vector. There are 
two major ways of representing a vector in a neural population- 
by a topographic map and by a nontopographic vectorial represen- 
tation. 

ulus is an example of a topographic map representation. A saccade 
is specified by the activity of a two-dimensional layer of neurons 
organized as a Euclidean manifold (see COLLICULAR VISUOMOTOR 
TRAN~FORMA~~ONS FOR GAZE CONTROL). Before a saccade, a 
bump of activity appears on the map at a location corresponding 
to the horizontal and vertical displacement of the saccade. 

Another example of a vectorial code is the code for the direction 
of hand movements in the primate motor cortex. Neurons in the 
primary motor cortex respond maximally for a paiticular direction 
of hand movement with a cosine tuning curve around this prefened 
direction (Georgopoulos et al., 1989).- his suggests that kach cell 
encodes the projection of the vector along its preferred direction. 
[Todorov (2000) questions this interpretation, but the precise iden- 
tity of the vector being encoded in motor cortex is not critical to 
the issue of remapping.] . 

In both cases, the original vector can be recovered from the popu- 
lation activity pattern using statistical estimators. Various examples 
of such estimators are described in POPULATION CODES. 

Neurophysiological Correlates of Remapping 

Continuous Remappings 

Georgopoulos et al. (1989) studied how the population vector var- 
ies over time in the mental rotation experiment described in the 
introduction. They found that for movement 90" counterclockwise 
from the target, the vector encoded in M1 initially pointed in the 
target direction and then continuously rotated 90' counterclock- 
wise, at which point the monkey initiated a hand movement (Figure 
1A). This is consistent with the interpretation of the reaction time 
experiments: The monkey had initially planned to move toward the 
stimulus, and then updated this command according to the task 
requirement. 

Similar continuous remapping occurs in the p~stsubiculum of 
the rat, one of the cortical structures involved in navigation of 
space. Neurons in the postsubiculum provide an internal compass 
that encodes the direction of the head with respect to remembered 
visual landmarks. The neurons have bell-shaped tuning curves 
around their best direction, similar to the code for hand diredon 
in the primary motor cortex. Electrophysiological recordings have 
revealed that this vector is continuously updated as the head ofthe 
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Nljgure 1. A, Rotation of population vec- 
.in the primary motor cortex when the 

$ghtness of the target (star) indicates a 
A 

olockwise movement. (Adapted from L 
be0rgopo~los et al., 1989.) B, Saccade 
kemapping. The monkey makes a double "\; \ / 
Vaocade (S1 and 52) to the remembered 

\ 

bositions of TI and T2. C, Post-stimulus- 
time histograms showing the responses of 
two cells with receptive fields RF1 and 

illustrated in Figure 1B. The second 
cell (RF2) responds only after the first 
eye movement, encoding the new retinal 
location of T2, even though it is no longer 

.present on the screen. 

rat moves in space, even in complete darkness, suggesting that 
vestibular inputs are used for this updating (see RODENT HEAD 
DIRECTION SYSTEM). 

Another example of continuous remappings has been reported 
in a double saccade task. In these experiments, two targets are 
briefly flashed in succession on the screen and the monkey makes 
successive saccades to their remembered locations (Figure 1B). 
Monkeys can perform this task with great accuracy, demonstrating 
that they do not simply keep a trace of the retinotopic location of 
the second target, since after the first eye movement this signal no 
longer corresponds to where the target was in space. Single unit 
recordings in the superior colliculus, frontal eye field, and parietal 
cortex have shown that the brain encodes the retinotopic location 
of the second target before the first saccade occurs. Then while the 
first eye movement is executed, this information is updated to rep- 
resent where the second target would appear on the retina after the 
first saccade (Figure 1C; Mays and Sparks, 1980). In certain cases, 
this update is predictive; i.e., it starts prior to the eye movement 
(Duharnel, Colby, and Goldberg, 1992). 

Graziano, Hu, and Gross (1997) have reported that the same 
mechanism appears to be at work in the premotor cortex. Bimodal, 
visuotactile neurons with receptive fields on the face remap the 
position of remembered visual stimuli after head movements. It is 
therefore becoming increasingly clear that continuous remappings 

T i e  

Time 

are widespread throughout the brain and play a critical role in sen- 
sorimotor transformations. 

Although all these examples clearly involve vector remappings, 
it is not entirely clear that the remappings are continuous. Hence, 
in the Georgopoulos et al. (1989) experiment, the population vector 
rotation could be a consequence of the simultaneous decay and 
growth of the initial planned hand direction and the final one, re- 
spectively, without ever activating intermediate directions. This is 
an example of one-shot remapping considered in the next section. 
Moreover, it is often difficult to determine whether a remapping in 
one particular area is computed in that area or is simply the reflec- 
tion of a remapping in an upstream area. 

One-Shot Sensory Remapping 

In the inferior colliculus and primary auditory cortex, neurons have 
bell-shaped auditory receptive fields in space whose positions are 
fixed with respect to the head. In contrast, in the multisensory layer 
of the superior colliculus, the positions of the auditory receptive 
fields are fixed in retinotopic coordinates, which implies that the 
auditory map must be combined with eye position (Jay and Sparks, 
1987). Therefore, the auditory space is remapped in visual coor- 
dinates, presumably for the purpose of allowing auditory targets to 
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be foveated by saccadic eye movements, a function mediated by 
the superior colliculus. 

A similar transformation has been found in the striatum and the 
premotor cortex, where some of the cells have visual receptive 
fields in somatosensory coordinates (skin-centered; Graziano et al., 
1997). In all cases, these remappings are thought to reflect an in- 
termediate stage of processing in sensorimotor transformations. 

These remappings can be considered as a change of coordinates, 
which correspond to a translation o eration. For example, the au- 
ditory remapping in the superior col 7 iculus requires the retinal lo- 
cation of the auditory stimulus, R, which, to a first approximation, 
can be computed by subtracting its head-centered location, A, from 
the current eye position, E: 

Remapping Models 
The remappings we have described so far fall into two categories: 
vector rotation with a vectorial code (e.g., mental rotation) and 
vector translation within a topographic map (e.g., auditory remap- 
ping in the superior colliculus). These transformations are similar, 
since rotating a vector within a vectorial representation consists of 
translating a pattern of activity around a circle. Therefore, in both 
cases the remapping involves translating a bell-shaped pattern of 
activity across a map. Most models perform this operation either 
dynamically through time or in one shot through the hidden layer 
of a feedfonvard network (Figure 2). 

Dynamical Models 
Two kinds of mechanisms have been used in models of continuous 
remapping: the integration of a velocity signal or the relaxation of 
a recurrent network. 

Integrative model for remapping. In the double saccade paradigm 
described above, the retinal coordinates of the second target were 
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updated during the fmt  saccade, a process that might involve mov- 
ing a hill of activity within the parietal cortex, A model by Droulez 
and Berthoz (1991) shows how this bump of activity could be 
moved continuously across the map by integrating the eye veloc- 
ities during the first saccade (Figure 1A). Their model is essentially 
a forward model of motion: Given a velocity signal, it generates 
the corresponding moving image. Interestingly, the equations are 
similar to those used for inverse models of motion processing. In 
both cases, the analysis relies on the assumption that the temporal 
derivative of a moving image is zero. In other words, the overall 
gray level profile in the image is unchanged; only the positions of 
the image features change. It is possible to design a recurrent net- 
work to implement this constraint (Droulez and Berthoz, 1991), 
and the resulting network moves arbitrary patterns of activity in 
response to an instantaneous velocity signal. 

Several variations of this idea have been developed. Dominey 
and Arbib have shown that an approximation of eye velocity, ob- 
tained from the eye position modulated neurons found in the pa- 
rietal cortex is sufficient for this architecture to work (Dominey 
and Arbib, 1992). Their simulations show patterns of activation 
very similar to the ones shown in Figure 1B in the part of their 
model corresponding to the parietal cortex, FEF, and superior col- 
liculus. Zhang (1996) has used line attractor networks to model 
head direction cells in the postsubiculum of the rat. In this model, 
the hill is moved by using the velocity signal-in this case a head 
velocity signal-to temporarily modify the efficacy of the lateral 
connections. 

Recurrent networks. Mental rotation of a population vector can 
be reproduced by training a neural network to follow a circular 
trajectory over time. In this case, the population vector rotates as 
a consequence of the network dynamics in the absence of any input 
~signals. This approach has been used by Lukashin and Georgopou- 
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Figure 2. In a map representation, re- 
mappings involve moving hills of activ- 
ity. These hills can be moved continu- 
ously in a recurrent network (A), or in one 
shot in a feedfonvard network (B). A, The 
recurrent network dynamically moves the 
hill of activity according to a velocity sig- 
nal, E. As described in the text, there are 
several ways to achieve this result. Drou- 
lez and Berthoz (1991) integrate the eye 
velocity signals through the lateral con- 
nections while Zhang (1996) uses the eya 
velocity signals to temporally bias the lat-, 
era1 connections. B, In feedforward re-% 
mapping, the hill is moved in one shot by 
the full amount of the current displace- 
ment, E, via an intermediate stage of pro- 
cessing in the hidden layer. The weights 
can be adjusted with a learning algorithm 
such as backpropagation. Alternatively, 
one can use basis function units in the 
hidden layer and train the weights to the 
output units with a simple learning algo- 
rithm such as the delta rule. 
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/jos (1994) to model the generation of hand trajectories, but when 
j)the trajectory is a circle, mental rotation and a circular hand trajec- 
'tory are equivalent. Although the model generates a rotating vector, 
'additional mechanisms must be specified to stop the rotation. 

'~irtgle-Shot Models 
peedforward models have been used for vectorial as well as map 
representations. They are used whenever the amplitude of the shift 
is available to the brain beforehand, such as auditory remapping in 
the superior colliculus in which the shift is directly proportional to 
the current eye position (Equation 1). In contrast, for mental rota- 
tion, the amplitude of the shift is specified by an external stimulus. 

Shifter models. As demonstrated by Touretzky, Redish, and Wan 
(1993), rotation within a vectorial representation can be performed 
by using a shifter circuit (for more details on shifter circuits, see 
ROUTING NETWORKS IN VISUAL CORTEX in the First Edition). 
Their architecture uses N independent circuits, each implementing 
a rotation through a particular angle. This mechanism is limited in 
resolution since it rotates only by multiples of 360lN degrees. 
Whether such shifter circuits actually exist in the brain remains to 
be demonstrated. 

Feedforward network models. There are many examples of three- 
layer networks, and variations thereof, that have been trained or 
handcrafted to perform sensory remappings. Since these remap- 
pings perform vector addition, it might appear unnecessary to de- 
ploy a fully nonlinear network for such a task. However, with a 
map representation, vector addition requires moving a hill of ac- 
tivity in a map as illustrated in Figure 2B, an operation that is highly 
nonlinear. 

Special-purpose nonlinear circuits can be designed to perform 
this operation (Groh and Sparks, 1992), but more biologically re- 
alistic solutions have been found with networks of sigmoidal units 
trained with backpropagation. Hence, the model of Zipser and An- 
dersen (see GAZE CODING IN THE POSTERIOR PARIETAL CORTEX 
in the First Edition), which was trained to compute a head-centered 
map from a retinotopic input, uses hidden units with retinotopic 
receptive fields modulated by eye position, as in parietal neurons 
(see also Krornmenhoek et al., 1993). 

However, backpropagation networks are generally quite difficult 
to analyze, providing realistic models but little insight into the al- 
gorithm used by the network. Pouget and Sejnowski (2001) have 
explored a way to analyze such networks using the theory of basis 
functions. 

Basis functions. The process of moving a hill of activity in a 
single shot can be better understood when considered within the 
larger framework of nonlinear function approximation. For exam- 
ple, consider the feedfonvard network shown in Figure 2B, applied 
to a remapping from retinotopic, R,, to head-centered coordinates, 
A,. Because of the map format used in the output later, the re- 
sponses of the output units are nonlinear in the input variables, 
namely, the retinal position, Rx, and eye position, Ex. 

Therefore, the actual goal of the network is to find an appropriate 
intermediate representation to approximate this output function. 
One possibility is to use basis functions of Rx and Ex in the hidden 
layer (Pouget and Sejnowski, 2001; Salinas and Abbot, 1995). 

Perhaps the best-known set of basis functions is the set of cosine 
and sine functions used in the Fourier transform. Another example 
is the set of Gaussian or radially symmetric functions with local 
support (see RADIAL BASIS FUNCTION NETWORKS). A good model 

of the response of parietal neurons, which are believed to be in- 
, 

volved in remapping, is a set of Gaussian functions of retinal po- 
sition multiplied by sigmoid functions of eye position. The result- 
ing response function is very similar to that of gain-modulated 
neurons in the posterior parietal cortex [see GAZE CODING IN THE 
POSTERIOR PARIETAL CORTEX in the First Edition, and Pouget and 
Snyder (2000) for a review]. 

Conclusions 
Remappings can be continuous and dynamic or a single shot 
through several layers of neurons. In both cases, the problem 
amounts to moving a hill of activity in neuronal maps. Whether 
some models are better than others is often difficult to establish 
simply because the neurophysiological data available are relatively 
sparse. Models can be further constrained by considering deficits 
that accompany localized lesions in humans (see Pouget and Se- 
jnowski, 2001). These data not only provide valuable insights into 
the nature of remappings but also might help bridge the gap be- 
tween behavior and single-cell responses. 

Road Map: Vision 
Related Reading: Collicular Visuomotor Transformations for Gaze Con- 

trol; Motion Perception: Elementary Mechanisms; Pursuit Eye Move- 
ments; Visual Attention; Visual Scene Perception 
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