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Human sensorimotor control is remarkably fast and accurate at the sys-
tem level despite severe speed-accuracy trade-offs at the component level. 
The discrepancy between the contrasting speed-accuracy trade-offs at 
these two levels is a paradox. Meanwhile, speed accuracy trade-offs, het-
erogeneity, and layered architectures are ubiquitous in nerves, skeletons, 
and muscles, but they have only been studied in isolation using domain-
specific models. In this article, we develop a  mechanistic model for how 
component speed-accuracy trade-offs constrain sensorimotor control that 
is consistent with Fitts’ law for reaching. The model suggests that di-
versity among components deconstrains the limitations of individual
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1784 Y. Nakahira et al.

components in sensorimotor control. Such diversity-enabled sweet spots
(DESSs) are ubiquitous in nature, explaining why large heterogeneities
exist in the components of biological systems and how natural selection
routinely evolves systems with fast and accurate responses using imper-
fect components.

1 Introduction

The disparities between the speeds and accuracies of the components engi-
neers use to design control systems and those found in nature are enormous.
Electronic systems use transistors with a nanosecond clock, and nature uses
neurons that work on a millisecond timescale. This introduces internal de-
lays in brains a million times slower than digital systems. Another dispar-
ity is in the rate at which information can be communicated by slow axons,
whose firing rate is limited to less than a kilohertz compared with wires
in electronic systems that signal at gigahertz rates. Nonetheless, nature has
achieved remarkably adept and adaptive control strategies that are both fast
and accurate. The explanation for this paradox has been elusive.

The premise of this study is that nature evolved control systems with
architectures that are compatible with the limitations of available compo-
nents. Previous theories with log and power laws with favorable trade-
offs are common in biological systems, but these are at the behavioral level
and do not explain how they are achieved in brains. We focus on a well-
established speed-accuracy trade-off for reaching and show how it could
be implemented with the known properties of nerves and muscles within
a control architecture.

Fitts’ law describes a speed-accuracy trade-off for rapidly reaching tar-
gets that holds for a wide range of effectors, including the hand, eye gaze,
and computer mouse. Because the time required for reaching a target of
widthW at a distance D empirically scales as log2(2D/W ) (Fitts, 1954; Fitts &
Peterson, 1964; MacKenzie, 2018), faster speed can be achieved with only a
small decrease in accuracy. In contrast, the speedaccuracy trade-offs (SATs)
of components implementing the control for reaching can be much more
severe (Hartline & Colman, 2007; More et al., 2013; More & Donelan, 2018;
Sterling & Laughlin, 2015; Perge et al., 2012). Here, SATs refer to the in-
herent constraint where improving one aspect, such as speed, often comes
at the detriment of the other, such as accuracy. In biological systems, SATs
at the component level (e.g., neurons, muscles) are typically highly restric-
tive, limiting the performance of each individual part. Improving both the
speed and accuracy of nerve signaling or muscle actuation requires profli-
gate biological resources (see Figure 1); as a consequence, very few nerves
or muscles are both fast and accurate (Sterling & Laughlin, 2015).

What are the mechanisms underlying the contrasting SATs at the compo-
nent and behavioral levels that deconstrain the hard limits of components?
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Diversity Deconstrains Component Limitations in Sensorimotor Control 1785

Figure 1: Component speed-accuracy trade-offs (SATs) in nerve signaling and
muscle actuation. The horizontal axes show accuracies, and the vertical axes
show speed. (A) Axon size-number trade-offs and the resulting SATs. The re-
gion above the dashed line represents the achievable speed (delay T) and ac-
curacy (rate R) given a fixed total cross-sectional area to contain all axons,
which is proportional to λ. (B) Muscle type/property and the resulting actu-
ation SATs. Muscles with a smaller diameter and darker color (indicating larger
amounts of myoglobin, mitochondria, and capillary density) contain oxidative
fibers, whereas muscles with a larger diameter and lighter color contain gly-
colytic fibers. Oxidative fibers are slower but more accurate than glycolytic
fibers. Within the class of fast-twitch glycolytic fibers, there are fibers that use
oxygen to help convert glycogen to ATP and fibers that use ATP stored in the
muscle cell to generate energy.

To answer this question, we studied the impact of component limitations
in sensing and actuation on reaching performance to identify key enablers
for fast and accurate system responses. The component limitations were (1)
Communication latency, (2) rate of sensory nerve signaling, (3), dynamic
range of muscle actuation, and (4) precision of the components.

We show that despite the differences in these mechanisms and their
limitations, a single principle can explain how they achieve a high level
of behavioral performance: diversity in the latencies and accuracies of
the components. This diversity principle is quite general and applies to
sensors, nerves, skeletons, and muscle locations and their compositions,
yielding dramatic performance improvements when coupled with optimal
controllers. These optimal controllers are able to dynamically adjust to
the diverse capabilities of the system components, maximizing overall
efficiency and effectiveness. This interaction creates diversity-enabled
sweet spots (DESSs)—regions of optimal system performance that exploit
the natural diversity in component properties, such as varying latencies or
accuracies. By leveraging this diversity, systems can achieve more robust
and efficient control, even when individual components are constrained
by severe speed-accuracy trade-offs.
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1786 Y. Nakahira et al.

Figure 2: The SATs in uniform versus diverse speed and temporal precision.
The predicted reaching times in section 2 are shown for varying normalized
width W/D. The predicted reaching time is shown for the uniform cases (equa-
tion 2.3) and for the diverse case (equation 2.4). The errors bars indicate the
range of possible reaching time due to temporal resolution, and the lines show
the predicted values for each condition.

2 Diversity in Speed and Temporal Precision

Our model characterizes the relationships between speed and temporal res-
olution, the impact of temporal resolution on reaching accuracy, and the
impact of speed on reaching time. The model does not include all the com-
plexities in sensorimotor reaching, only the minimum elements necessary
to achieve the observed log form of the system SATs. The model we describe
generates the reaching SAT in Figure 2. In the model, the diverse case per-
forms much better than the uniform case because the diverse case can use a
faster initial speed to move a large portion of the distance as well as a slower
final speed to achieve the required accuracy. This speed-accuracy trade-off
is qualitatively similar to the ones from Fitts’ law, suggesting that speed di-
versity may underlie the presence of sweet spots in these speed-accuracy
trade-offs.

2.1 Reaching Task and Transportation. We consider moving from x =
D to a target [−W/2,W/2], which is centered at xtarget = 0 and has width W ,
without over- or undershooting. Over- or undershooting is defined as get-
ting into the region [∞, −W/2] and stopping before arriving (i.e., stopping
at [W/2,∞]). Let {x(t)} be a reaching trajectory. We are interested in char-
acterizing the travel time, min{T : ẋ(t) = 0 and |x(t)| ≤ W/2, for all t ≥ T},
and the settling time, min{T : |x(t)| ≤ W/2, for all t ≥ T}. We characterize
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Diversity Deconstrains Component Limitations in Sensorimotor Control 1787

the speed and accuracy trade-offs when uniform or diverse speeds are al-
lowed for reaching, which also applies to transportation. We limit over- or
undershooting in reaching and explicitly model the cost of switching be-
tween speeds (which are allowed to take zero or nonzero values), which
have qualitative speed and accuracy trade-offs.

2.2 Component Trade-Offs between Speed and Temporal Precision.
Either one or more speeds from S := {s1, s2, · · · , sn} can be used to reach
a target of width W at a distance D without allowing for over- or under-
shooting. Without loss of generality, we assume these speeds are indexed
in descending order:

s1 > s2 > · · · > sn. (2.1)

The spatial error ei, caused by the limited temporal precision in the duration
to maintain speed si, is defined as the worst-case error in the distance that
can be traveled by each speed. Specifically, when x∗ is the intended distance
to be traveled by speed si, the actual distance x can be controlled within the
range of |x − x∗| ≤ ei, where the unit of ei is the same as the unit used for
the distance (or location). We assume that the faster the speeds, the larger
the spatial errors: i.e.

e1 ≥ e2 ≥ · · · ≥ en. (2.2)

This assumption holds for cases such as Schmidt’s law (Schmidt et al., 1979);
given a fixed temporal precision, spatial error (the error in location) is pro-
portional to the velocity. We model the switching cost between speeds as a
time delay of Ts.

2.3 System Trade-Offs between Time and Precision. From the above
definition of spatial error, only speeds whose spatial errors are smaller than
e ≤ W/2 can be used if the final location must be within an interval of width
W . Thus, the admissible set of speeds that can reach a target of width W
without over- or undershooting is characterized as Sa(W ) := {si ∈ S : ei ≤
W/2} ⊂ S . Similarly, when one needs to perform multiple reaching tasks
whose target width can take any values in a set W , the admissible set of
speeds for the target width set W is characterized by ∩W∈WSa(W ).

In the cases of uniform speeds, only one speed is allowed to be used.
That speed must be chosen from the admissible set of speeds ∩W∈WSa(W )
to avoid over- or undershooting. When the fastest admissible speed, si =
max ∩W∈WSa(W ) with spatial error ei is used, one must intend to stop af-
ter the state x(t) reaches W/2 + ei to avoid undershooting. When one in-
tends to stop at x = W/2 + ei, the travel time can range from (D − W/2)/si

to (D − W/2 + 2ei)/si, and the settling time is (D − W/2)/si. For sufficiently
long distance D 	 W , both travel time and settling time are dominated by
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1788 Y. Nakahira et al.

the term D/si and scales with respect to

D/{∩W∈WSa(W )} + O(1), (2.3)

where O(1) represents the terms that do not scale with D as D → ∞.
In the cases of diverse speeds, multiple speeds can be used. This is partic-

ularly beneficial for long distances (D 	 en), as one can use the faster speed
to travel long distances and slower speed to limit the spatial errors. When
a faster speed than the admissible ones sk /∈ Sa(W ) is used, the speed needs
to be changed to an admissible one near the target. When one switches
to the slow speed (fastest admissible speed) si = maxSa(W ), switching be-
fore entering the target at x = W/2 is sufficient for stopping within the tar-
get [−W/2,W/2] because the temporal error of the slower speed satisfies
ei ≤ W/2 by construction. Switching before entering the target at x = W/2
can be ensured by intending to change the faster speed at x = W/2 − ek,
given the temporal error of the faster speed ek. For sufficiently long dis-
tance D, when switching is intended at x = W/2 − e1, the travel timescale is
with respect to,

D/s1 + O(1). (2.4)

In equation 2.4, the second term O(1) is determined by the size of W and
e and thus does not scale with D as D → ∞. By construction, the distance
traveled during the travel time and the settling time differs by at most W ,
and thus the difference between the travel time and settling time is upper-
bounded by maxs∈S W/s, which does not depend on the distance of the tar-
get D. Therefore, the settling time also scales with respect to equation 2.4.
Equations 2.3 and 2.4 characterize the scaling of travel times for sufficiently
large D for the uniform and diverse cases, respectively. It shall be noted that
the diverse case travel time is governed by the fastest speed sn, whereas that
of the uniform case is limited by the admissible speeds.

Next, we consider a special case n = 2 and show how the travel times
vary with respect to the target width W given D in a way that captures
the influence of O(1) term in equations 2.3 and 2.4. In the uniform case,
the travel time ranges from [(D − W/2)/si, (D − W/2 + 2ei)/si], where
si = max ∩W∈WSa(W ). In the diverse case, when the faster speed is admis-
sible, that is, sn = s2 ∈ S (W ), the travel time ranges [(D − W/2)/sn, (D −
W/2 + 2en)/sn]. Otherwise, the travel time range is computed as fol-
lows. Let di and d̂i be the actual and intended distance traveled by
speed si, respectively. As stated above, we intend to switch from faster
to slower speed at x = W/2 − e1, which in turn gives d̂1 = D − W/2 − e1

and d1 ∈ [D − W/2 − 2e1, D − W/2]. After switching to the slower speed,
we intend to stop at x = W/2 − e2 when D − W/2 > d1, or at the earliest
possible time otherwise. This gives d̂2 = max{D − W/2 + e2 − d1, e2} and
d2 ∈ [d̂2 − e2, d̂2 + e2]. Thus, the set for d = (d1, d2) given the temporal
error can be characterized by D = {d : d1 ∈ [D − W/2 − 2e2, D − W/2], d2
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Diversity Deconstrains Component Limitations in Sensorimotor Control 1789

= [max{D − W/2 + e2 − d1, e2} − e2, max{D − W/2 + e2 − d1, e2} + e2]. Ac-
cordingly, the actual travel time is {Td + d1/s1 + d2/s2 : d ∈ D}.

2.4 Results. The resulting speed and accuracy of the uniform case and
the diverse case are compared in Figure 2. We set D = 12, W = {1, 2, 3, 4}.
The pairs of speed and spatial error are set to be (s1, e1) = (2.5, 5), (s2, e2) =
(0.4, 0.8). For both cases, the error bars show the ranges of travel times and
the dots show their centers (midpoints). The above result is reminiscent
of how humans can travel with high speed and accuracy using differing
means of transportation. The assumptions made in equations 2.1 and 2.2
hold for many means of transportation. For example, flights are fastest but
can only land at airports; cars can travel but only stop at the parking lots;
and a walker can stop at almost anywhere. The case of traveling by walk-
ing, driving, or flying can be modeled by setting the parameters of the above
model to be n = 3, and s1, s2, s3 being walking driving, and flying speeds,
respectively. Comparing equations 2.3 and 2.4 shows that the flexibility to
combine walking, driving, and flying enables the traveling time to scale ac-
cording to s3 and the resolution to scale according to e1.

3 Diversity in Neurons and Muscles

3.1 Role of Diversity in Neurons. SATs for reaching tasks are influ-
enced by the limited communication capacity of the axons in both sen-
sory neurons and motoneurons. Theses axons transmit sensory information
through the sensorimotor feedback loop from the periphery to the brain and
back to the spinal cord, ultimately activating muscles to execute the task.
However, axons within a nerve bundle, as well as across different types
of nerves, exhibit a significant degree of heterogeneity, with sizes ranging
over two orders of magnitude from tenths to tens of microns (Perge et al.,
2012; Stenum, 2018; More & Donelan, 2018). This heterogeneity leads to ex-
treme differences in neural signaling speed and accuracy, as both the speed
and rate of information flow in an axon depend on its diameter and degree
of myelination (see Figure 1A). In this section, we present a control system
model that captures how reaching speed and accuracy is affected by latency
and the information capacity of nerve signaling. Our model highlights how
diversity in axon composition enhances the speed and precision of reach-
ing movements, a factor not accounted for in traditional Fitts’ law models,
which typically rely on information theory without considering the trade-
off between information and latency.

3.1.1 Reaching Task. We consider the goal of reaching a target as rapidly
and accurately as possible. We use {x(t)}t=0,1,2,... to denote the trajectory of
the cursor, where the coordinate of x(t) is chosen so that the target is located
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1790 Y. Nakahira et al.

at the origin. The trajectory is generated by

x(t + 1) = x(t) + u(t), (3.1)

where the change in position over time, x(t + 1) − x(t), is determined by
the controller and motor actuation u(t). The initial location of the cursor is
set to be x(0). We assume that the value of x(0) can only be accessed by the
controller after t = 0, and its value is smaller than D, that is, x(0) ∈ [−D, D].
The speed of reaching is quantified by the time taken to reach the target
Tr, and accuracy is quantified by the normalized width W/D. The target is
chosen from a set of disjoint intervals of length W within distance D from
the initial location. We define the reaching time as

Tr = {τ : |x(t)| ≤ W/2 for any t ≥ τ, |x(0)| ≤ D}. (3.2)

Here, the target is set at the origin of the coordinate of x(t), and the initial
location within distance D from the origin (target) lies in [−D, D]. The unit
of Tr is the number of sampling intervals, so the actual reaching time is Tr

times the sampling interval. The control action is generated using sensing
components (e.g., eyes, muscle sensors); communication components (e.g.,
nerves); computing components (e.g., cortex in the central nervous system);
and actuation components (e.g., eye, arm muscles). This model is used to
study the performance limitations in two scenarios: when the SATs are bot-
tlenecked by the limitations in nerve signaling (presented in this subsection)
and when they are by muscle actuation (see section 3.2). For each scenario,
we characterize how the delays and inaccuracies of the neural/motor com-
ponents affect the performance in reaching.

3.1.2 The SATs in Nerve Signaling. The limitations in nerve signaling
are quantified by the signaling delay Ts and rate R in the feedback loop.
The delay limits how fast a sensory signal can be reflected on the control
action, while the signaling rate limits the amount of information that
can be transmitted per unit time. The SATs depend on how the nerves
encode information (e.g., spike based, spike rate). Here, we summa-
rize the SATs in spike-based encoding and refer interested readers to
Nakahira et al. (2021) for further details and other encoding schemes. In
the spike-based encoding scheme, information is encoded in the presence
or absence of a spike in specific time intervals, analogous to digital packet-
switching networks (Salinas & Sejnowski, 2001; Srivastava et al., 2017). This
encoding method requires spikes to be generated with sufficient accuracy
in timing, which has been experimentally verified in multiple types of
neurons (Mainen & Sejnowski, 1995; Fox et al., 2010). Consider a nerve
containing bundles of n axons, each with an average radius ρ. Given fixed
resources to build and maintain nerves (axons), there are inherent trade-offs
between minimizing signaling delay and maximizing the signaling rate.
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Diversity Deconstrains Component Limitations in Sensorimotor Control 1791

Such size versus number trade-offs can be translated into the nerve signal-
ing SATs using the findings from Perge et al. (2009, 2012) and Sterling and
Laughlin (2015). When the signaling is precise and noiseless, an axon with
an achievable firing rate φ can transmit φ bits of information per unit time.
For sufficiently large myelinated axons, we assume that the propagation
speed 1/Ts is proportional to the axon radius ρ (Sterling & Laughlin, 2015),

Ts = α/ρ, (3.3)

for some proportionality constant α. We also model the achievable firing
rate φ to be proportional to the axon radius ρ,

φ = βρ, (3.4)

for some proportionality constant β. Moreover, the space and metabolic
costs of a nerve are proportional to its volume (Sterling & Laughlin, 2015).
Given a fixed nerve length, these costs are also proportional to its total cross-
sectional area s. Using the above properties, we have

R = nφ = s
πρ2 βρ = sβ

π

1
ρ

= sβ
απ

Ts, (3.5)

This leads to

R = λTs, (3.6)

where λ = sβ/πα is proportional to the spatial and metabolic costs to build
and maintain the nerves. This key trade-off between time delay (speed) in-
formation rate (accuracy), is illustrated in Figure 1A. Nerve-signaling SATs
differ from species to species and in general increase with animal size (More
& Donelan, 2018). Bigger animals have more inertia and can tolerate longer
delays. They also use more time to compute in part because large animals
(e.g., elephants) are more prone to falling.

3.1.3 System SATs in Reaching. The system SATs in reaching, arising from
the component SATs, is characterized as follows. The range [−D, D] can
hold no fewer than 2D/W disjoint intervals of length W , so the amount of
information required to differentiate one interval from other such intervals
can be computed as ID := log2(2D/W ) bits, which equals the Fitts’ index of
difficulty. This means that after sensing the distance from the target, ID/R
time steps are required to deliver ID bits of information from the sensors
to the actuators. Then there is a delay of Ts time steps before it is reflected
in the actuation. Therefore, the worst-case reaching time cannot be smaller
than the sum of the two types of delays, Ts + ID/R, yielding

sup
|x(0)|∈[−D,D]

Tr ≥ Ts + 1
R

log2(2D/W ) = Ts + 1
R

ID. (3.7)
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1792 Y. Nakahira et al.

Figure 3: The impact of delay and quantization in reaching time. The lower
bound of the reaching time (black) and its composition into the delay term (blue)
and rate term (red) from equation 3.12 in section 3.1 are shown for different
delays and rates with D = 10 and W = 3. In the delayed and quantized case,
the added delay T and quantization rate R satisfy the SAT T = (R − 1)/8.

This provides insights into Fitts’ law, Tr = p + qID, as follows. The first
term, p = Ts, is determined by the delay in reacting and transmitting the
information on the distance from the target, while q = 1/R is determined
from the limited data rate in the feedback loop. Combining equations 3.6
and 3.7 gives a theoretical prediction on how the neurophysiological SATs
at the component level affect the reaching SATs (see Figure 3). Specifically,
the reaching SAT is given by

sup
|d|≤D

Tr ≥ 1
λ

R + 1
R

log2(2D/W ) = 1
λ

R + 1
R

ID. (3.8)

Taking the derivative of the right-hand side of equation 3.8 with respect to
R to zero, we proceed as follows:

d
dR

(
1

λR
+ ID

R

)
= − 1

λR2 + ID
R2 = 0. (3.9)

∴ R2 = λID (3.10)

By substituting this into equation 3.6, the minimum reaching time is
achieved by

R =
√

λID, Ts = R
λ

=
√

ID/λ. (3.11)
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Diversity Deconstrains Component Limitations in Sensorimotor Control 1793

In the above analysis, we used the component SAT of the form of equa-
tion 3.6, but it can be replaced with other formulas for different nerve types
or encoding mechanisms.

3.1.4 Fitts’ Law. The reaching time under the worst-case target location
achievable by the feedback loop with signaling delay Ts and signaling rate
R is given from equation 3.7 by

Ts + 1
R

log2(2D/W ) = Ts + 1
R

ID, (3.12)

where ID := log2(2D/W ) is the Fitts’ index of difficulty. Equation 3.12 has
the form of Fitts’ law, and provides a mechanistic interpretation of the
individual components of the reaching time. The first term is a function
only of delay Ts and is the contribution of delay to the feedback loop (de-
noted as the delay term). The second term is a function only of the signaling
rate R and is the contribution due to limited signaling rate (denoted as the
rate term). In equation 3.12, the predicted reaching time depends linearly on
the signaling delay Ts and inversely on the signaling rate R (see Figure 3).
There also exist component SATs in nerve signaling, and the specific forms
depend on various terms such as nerve type, myelination, and resource
budget.

Recall that some nerve-signaling SAT can be approximated by R = λTs,
where λ is proportional to the spatial and metabolic resources necessary
to build and maintain the nerves. The relationship between Ts and R can
be used to understand the optimal signaling delay and rate for reach-
ing tasks. Specifically, the minimum reaching time for the combined con-
dition occurs when errors from delays and rate limits are balanced at
intermediate speeds and rates, (Ts = √

ID/λ, R = √
λID), rather than at

maximum speeds or rates. As the index of difficulty ID increases, the reach-
ing task requires more accuracy, and the relative weight of the rate term to
delay term increases. In contrast, minimizing either the delay (Ts → 0) or
the rate (R → ∞) alone leads to a large delay term or rate term, and conse-
quently longer reaching times.

Because the optimal Ts and R vary with ID, reaching performance over a
broad range of difficulties depends on the diversity in the signaling speed
and accuracy of components in the control system. This finding is not con-
tingent on the linearity assumption of the component SATs; other forms of
SATs result in different optimal signaling speeds and rates as functions of
ID and λ. Nevertheless, diversity remains essential for achieving robust per-
formance over varying difficulties. This requirement may explain the uni-
versal presence of heterogeneity in the sizes and number of axons, which
mediate a wide range of neural signaling speeds and accuracies (More &
Donelan, 2018; Sterling & Laughlin, 2015; Perge et al., 2012).
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1794 Y. Nakahira et al.

3.2 Role of Diversity in Motor Units. Another benefit of diversity in
the control process occurs in relieving the performance bottleneck due to
muscle actuation. Heterogeneity exists in striated muscles, which typically
have both larger fast-twitch muscle fibers and smaller slow-twitch muscle
fibers (see Figure 1B), and in the wide range of strengths of the motor
units (Kernell, 2006; Henneman et al., 1965). Large motor units produce
strong forces and shorter rise times, benefiting speed, whereas small motor
units are weaker but achieve better accuracy. Motor units are recruited
according to Henneman’s size principle, recruited from smaller to larger
sizes and force for slow movements (Henneman et al., 1965); the recruit-
ment order is more complex and depends on the dynamics of the required
muscle strength for fast movements (Marshall et al., 2021). On the other
hand, the literature has studied Fitts’ laws and reaching behaviors in the
context of motor variability (Faisal et al., 2008; Schmidt et al., 1979; Galen &
Jong, 1995) and models involving optimizing jerks (Crossman & Goodeve,
1983), smoothness (Crossman & Goodeve, 1983), acceleration (Flash &
Hogan, 1985), and kinematics (Plamondon & Alimi, 1997), among oth-
ers. Although many of these models implicitly capture the component
limitations as noise, little study has explored how muscle SATs impose
fundamental limits in the speed and accuracy of reaching and how the
diversity in motor units affects system behaviors. Here, we characterize
how the component SATs in muscle actuation bear on the system SATs in
reaching. Specifically, we consider the same setting of the reaching task as
in the section 3.1 reaching task. We first model the trade-off between the
rise time versus force resolution in muscle actuation. We then translate
those into the trade-offs between reaching time versus normalized width.
Using this characterization, we investigate the mechanisms behind the
use of diversity to deconstrain component limits for obtaining Fitts-like
laws.

3.2.1 Component Trade-Offs in Muscle Actuation. A muscle of fixed size
has trade-offs in the size and number of motor units in its composition.
This number versus size trade-offs give rise to the trade-offs between the
speeds and accuracies in motor actuation (see Figures 1B and 4). Specifi-
cally, given a fixed space and metabolic resources, the system can build and
maintain only many small motor units or a few large motor units. The for-
mer achieves better resolution and accuracy (see Figure 4A), while the latter
achieves better speed (Figure 4B). We quantify such SAT in actuation using
the following model. We consider a muscle with m motor units, indexed by
i ∈ M := {1, 2, · · · , m}. The cross-sectional area of muscle fibers of the mo-
tor units affects the biological resources to be used to build and maintain
them. We use F̄i to denote the force that can be produced by the motor unit
i and assume without loss of generality F̄1 ≤ F̄2 ≤ · · · ≤ F̄m. Given a fixed
fiber length, the maximum force of a muscle 	 is proportional to its fiber
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Diversity Deconstrains Component Limitations in Sensorimotor Control 1795

Figure 4: Component-level SATs in muscle actuation. The force rise time uses
equation 3.16 from Section 3.2. (A) Force rise time of many small motor units
(MUs). The system has eight small motor units of strength level 0.1. The lines
show the transient behaviors of the cumulative force levels and their composi-
tion. (B) Force rise time of a large motor unit of strength level 0.8. For both cases,
the total strength had the same value (0.8) but with different time courses.

cross-sectional area (strictly speaking, myofibril cross-sectional area; Gold-
spink, 1985; Conwit et al., 1999),

	 =
m∑

i=1

F̄i. (3.13)

Here we approximate that the maximum force is determined only by the to-
tal cross-sectional area of all fibers but not its specific size and number com-
position. Given a fixed cross-sectional area constraining maximum force,
the composition of motor units (and its fiber size and number) determines
the speed and accuracy in actuation. The speed of the motor unit i can be
quantified using the time it takes to rise to its steady-state force Fi after being
innervated by its motor neurons. The response dynamics are complex and
nonlinear, for which a few models have been proposed (Marieb & Hoehn,
2007; Brezina et al., 2000; Edman & Josephson, 2007; Mendell, 2005). Al-
though the particulars of the models differ by muscle types and neuromus-
cular parameters, most share three characteristic properties. First, the force
response dynamics resembles a sigmoidal function: the contraction begins
slowly, becomes faster, and slows down around a steady-state level. Sec-
ond, motor units with larger fibers and force have greater response speeds.
Third, for a fixed total cross-sectional area of motor fibers, composing the
motor units with a few larger fibers results in faster response speed than
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1796 Y. Nakahira et al.

composing the motor units with many small fibers. Below, we use the model
given by Brezina et al. (2000), but we expect our subsequent analysis to pro-
duce similar results for other muscle response dynamics with the above
three characteristic properties. Brezina et al. characterized the empirical re-
lationship between contraction and firing frequency and conjectured that
the relationship between force and firing frequency likely follows a similar
form (even though the force of individual motor units cannot be measured).

Based on this relation, the force response dynamics are given by,

ȧi(t) = α f p
i (t)(1 − ai(t)) − βai(t),

Fi(t) = aq
i (t), (3.14)

where F(t) is the force, f p
i (t) is the input (motor neuron firing frequency),

ai(t) is the internal state, and α, β, p, q are fixed constants (Brezina et al.,
2000). Note that equation 3.14 satisfies all of the above characteristic prop-
erties. In our subsequent analysis, we use the parameter values that Brezina
et al. used: α = 1, β = 1, p = 1, q = 3. When motor unit i is recruited at t = 0
for a duration of τi(≥ 0), its force Fi(t) is computed by equation 3.14 with the
input

fi(t) = f̄i1[0,τi](t). (3.15)

Here, 1I(t) = 1 if t ∈ I, and 1I(t) = 0 otherwise. One can use this relationship
to compute how the force level rises after recruitment: setting τi = ∞ in
equation 3.15 yields

Fi(t) =
{

f̄i

f̄i + 1
(−e−t( f̄i+1) + 1)

}1/q

1(t). (3.16)

From equation 3.16 the appropriate step input that gives a steady-state force
F̄i is

fi(t) = f̄i1[0,∞](t), (3.17)

f̄i = 1
(1/F̄i)1/q − 1

. (3.18)

To see this, one can notice that a step input, equation 3.17, gives Fi(t) →
( f̄i/( f̄i + 1))1/q as t → ∞. When we set f̄i to be equation 3.18, we get the
steady-state force ( f̄i/( f̄i + 1))1/q = F̄i.

The speed of muscle actuation is quantified using the time required for
the aggregate force generated by all motor units to reach its steady-state
values. The steady-state force resolution is quantified using Henneman’s
size principle (Henneman et al., 1965), which states that motor units in the
spinal cord are recruited in ascending order of F̄i. Thus, a muscle at a non-
transient time can only generate m + 1 discrete steady-state force levels: 0
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Diversity Deconstrains Component Limitations in Sensorimotor Control 1797

and
n∑

i=1

F̄i, n ∈ M. (3.19)

Two example cases for the speed and resolution are illustrated in Fig-
ure 4A for the case with many small motor units and in Figure 4B for
the case with one big motor unit. The parameters are set to be m = 8, F̄i =
0.1, and i ∈ M for the former, and m = 1 and F̄1 = 0.8 for the latter. In both
cases, the total resource use (total cross-sectional area of all motor units) is
set to be equivalent, and so is the maximum strength that can be produced
by all motor units: Ftotal = ∑m

i=1 F̄i = 0.8. The solid lines show
∑n

i=1 Fi(t) for
n ∈ M as a function of time t when all motor units start to be recruited at
time t = 0. The rising speed of the total force

∑m
i=1 Fi(t) is faster when motor

units are composed of one big motor unit, whereas the resolution of steady-
state force levels

∑n
i=1 Fi(t), n ∈ M is better with many small motor units.

3.2.2 System SATs in Reaching. The duration of recruitment τi in equa-
tion 3.15 has a finite temporal resolution. We model the resolution of the
recruitment duration τi using

τi ∈ Ts := {0, tr, 2tr, · · · , }, i ∈ M, (3.20)

where tr can be considered as the temporal resolution. The resolution of re-
cruitment duration in turn limits the resolution in reaching accuracy. This
influence can be characterized as below. The dynamics of the reaching dis-
tance y(t) can be written as

d2

dt2 y(t) =
∑

i

(Fi(t) − h(t)), (3.21)

given the initial distance y(0) = 0. The function h(t), which captures the fric-
tion acting against the motion, takes the form

h(t) =
{

hs if dx(t)/dt = 0
hk otherwise,

(3.22)

where hs can be obtained from the coefficient of static friction and hk can be
obtained from the kinetic friction.

3.2.3 Size Principle in Reaching. Recall that the numbers and sizes of mo-
tor units affect force rise time, and resolution in actuation is given in Fig-
ures 4A and 4B for systems with many small motor units and one big motor
unit, respectively. Here, spatial and metabolic resources to build and main-
tain them are set to be identical. The force rise time, and resolution can then
be translated to reaching SATs as follows. We consider the cases of having
two midsized motor units (denoted as the uniform case) or having a large
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1798 Y. Nakahira et al.

motor unit and a small one (denoted as the diverse case). While this ex-
ample uses m = 2, the comparison between uniform versus diverse cases
is qualitatively similar for other m. The uniform case has two motor units
with the same strength level:

(F1, F2) = (0.5, 0.5), Ftotal = F1 + F2 = 1. (3.23)

The diverse case has two motor units with different strength levels:

(F1, F2) = (0.85, 0.15), Ftotal = F1 + F2 = 1. (3.24)

For a fair comparison, the sum of steady-state force levels of all motor units
Ftotal = ∑m

i=1 F̄i = 1 is set to be identical for both cases, so the total resource
use (total cross-sectional area of all motor units) is also identical.

The error between the actual recruitment duration τi and desired recruit-
ment duration τ ∗ is given by sup

τ∈Ts,τ ∗≥0 |τ − τ ∗| = tr/2 from equation 3.20.
LetMa(W ) (∈ M) denote the set of the recruitable motor units—motor units
that can control the reaching error to be within one-half of the target width.
The set Ma(W ) can be evaluated numerically to obtain the achievable forces∑

i∈Ma (W ) Fi(t) and achievable reaching time in Figures 5A and 5B.
Specifically, Figure 5A shows the achievable distance and reaching time

given the finite resolution of steady-state force levels in equation 3.19 and
that of recruitment durations in equation 3.20. Each dot in Figure 5A shows
an achievable distance from equation 3.21 that can be realized by the re-
cruitment dynamics, equation 3.14, with some τi ∈ Ts, i ∈ M. The tempo-
ral resolution is set to be tr = 0.5. Figure 5B zooms Figure 5A and shows
how diversity in motor units benefits reaching. In the case of diverse motor
units, large motor units can be used to reach longer distances due to their
faster rise time, and small motor units can be used to fine-tune the distance.
However, the case of uniform motor units does not have this advan-
tage. Thus, the resolution in achievable distance, given by {y(t f ) : y(t) =
y(t f ),∀t ≥ t f , equations 3.14, 3.20, and 3.21} is coarser when the system only
has uniform motor units. This is also evidenced by the fact that the dots for
the uniform case (black) are sparser than those for the diverse case (red).

Consequently, the reaching SATs are given in Figure 6. In the uniform
case, the component trade-offs in muscle actuation directly affect reaching
SATs. In contrast, in the diverse case, a sweet spot where faster performance
can be achieved with little degradation of accuracy exists. This performance
sweet spot is enabled by muscle diversity. Larger motor units can be used to
speed to greater distances D, while smaller motor units can be used to accu-
rately control landing on small widths W . Thus, the reaching time decreases
sharply as the normalized width (W/D) increases, resulting in an approxi-
mately logarithmic SAT curve in reaching. The resulting relation between
reaching time and normalized width agrees with the logarithmic trade-offs
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Diversity Deconstrains Component Limitations in Sensorimotor Control 1799

Figure 5: The achievable reaching distance and reaching time for the cases of
uniform versus diverse motor units (MU). (A) Plot with all ranges of distance.
(B) Zoomed plot on the distance range [0.6, 2]. Each dot represents an achiev-
able pair between the reaching distance and time in uniform case (black) and
diverse case (red), based on the model from section 3.2. The pairs with identical
contraction duration in both cases are colored in green. The uniform case has
two motor units with the same force levels (F1 = F2 = 0.5), and the diverse case
has two motor units with different force levels (F1 = 0.85, F2 = 0.15). The maxi-
mum force that can be produced by all motor units is set to be identical in both
cases, F1 + F2 = 1. The muscle contraction duration for each motor unit ranges
from 0.75 to 14.75 with a temporal resolution of 0.5. The friction parameters are
set to be hs = 0.6 and hk = 0.54. The diverse case has better resolution in dis-
tance for the same reaching time because large motor units help reach longer
distances due to faster rise time and the small motor units help achieve more
precise movements due to their fine-tuning capability.
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1800 Y. Nakahira et al.

Figure 6: The SATs in reaching arise from uniform vs diverse motor units. The
reaching time is obtained by applying the muscle actuation SATs, arising from
equation 3.14, in the reaching dynamics in equation 3.21 in section 3.2. The
trade-offs between reaching times (speed) and normalized width (accuracy) are
shown when muscles are modeled to have uniform motor units (dotted line) or
diverse motor units (solid line).

empirically observed in Fitts’ law, another result derived from the diversity
principle.

4 Discussion

In contrast to the extensive body of research on Fitts’ law, which predom-
inantly relies on behavioral-level models, our study focuses on the diver-
sity inherent in sensing and actuation components—a feature ubiquitous in
nature—and its impact on sensorimotor performance. We demonstrate that
the variation in producible speeds and accuracies of nerve signaling and
muscle actuation enhances reaching performance in sensorimotor control.
These mechanisms, termed diversity-enabled sweet spots (DeSSs), mitigate
physiological constraints to achieve the improved speed-accuracy trade-
offs observed at the behavioral level. Numerous examples of such mecha-
nisms exist in both natural and engineered systems; however, they are often
studied in isolation using domain-specific, complex models. The analysis in
this article suggests DESSs as a unifying principle for building robust sys-
tems with imperfect hardware.

The properties of neurons and muscles have been extensively studied
from the perspective of information theory to explain the properties of
nerves and muscles that maximize information rates within a fixed en-
ergy budget (Hasenstaub et al., 2010; Perge et al., 2012; Hoffmann, 2013;
Senn et al., 1997) and minimize the transentropy in sensing (Hatze, 1979).
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Diversity Deconstrains Component Limitations in Sensorimotor Control 1801

Information theory has also been used to explain Fitts’ law where the
movement amplitude is the signal and the target width is the noise (Fitts,
1954; Hoffmann, 2013). These models are macroscopic explanations based
on information and communication and are analogous to entropy in
thermodynamics. While they can capture important high-level behavioral
phenomena, they fall short of explaining how robust control perfor-
mance emerges from the intricate interactions of diverse physiological
components at the microscopic level. Moreover, maximizing neither infor-
mation nor speed optimizes the control performance of the entire system,
which requires balancing the trade-offs between speed and accuracy.

Many control models for reaching have been proposed previously, in-
cluding two-component, discrete step, step response, iterative-correction,
submovement, overlapping impulse, mass-spring, and impulse variability
models, some of which involve visual feedback or feedforward motor pro-
grams (Hoffmann, 2013; Meyer et al., 2018; Elliott et al., 2017; Crossman &
Goodeve, 1983; Takeda et al., 2019; Gawthrop et al., 2008; Schmidt et al.,
1979). In these models, logarithmic trade-offs arise from mechanisms (not
mutually exclusive) such as corrective submovements (a constant ratio of
the remaining distance is traveled with each submovement; Crossman &
Goodeve, 1983), force-time curves (Schmidt et al., 1979), signal-dependent
noise (Takeda et al., 2019), predictive control (Gawthrop et al., 2008), and
proprioceptive or visual feedback (Schmidt et al., 1979). However, all of
these explanations are at the macroscopic level, and none take into account
the underlying physiological properties of neurons and muscles and their
SATs. These behavioral control models are a consequence of the microscopic
constraints.

By focusing on the physiological substrates of control, we derived an in-
tegrated model where behavior arises from the underlying properties of
the components and their constraints, a microscopic model, in the same
way that thermodynamics can be derived from statistical mechanics. In our
model, macroscopic behavior arises from the detailed architectural features
of distributed control theory based on the extreme diversity in the orga-
nization of components in nerves and muscles. Both levels of description
are useful, just as statistical mechanics and thermodynamics both provide
valuable insights into the physics of heat. The statistical mechanics analogy
is a familiar example from physics to illustrate the microscopic and macro-
scopic levels of analysis. However, both thermodynamics and statistical me-
chanics assume homogeneous microscopic substrates, so the gap between
them is much smaller than the gap between the latter in our models, which
are diverse in every respect and fragile to random rearrangements at the
microscopic substrate level. Specifically, our approach shows how micro-
scopic diversity in neural and muscular components can be exploited to
achieve good performance over a broad range of conditions and difficul-
ties. This is a general principle that extends beyond our reaching example.
This article only hints at how the architecture of a system can deconstrain
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1802 Y. Nakahira et al.

performance from underlying mechanisms (Nakahira et al., 2021; Matni
et al., 2024).

This need for diversity may explain why there are orders of magnitude
differences in the diameters, numbers, and degrees of myelination of axons
within mammalian nerve bundles and between different types of sensory
nerves (Stenum, 2018; More et al., 2013; More & Donelan, 2018; Sober et al.,
2018; Hodgkin, 1954; Hartline & Colman, 2007). A similar heterogeneity is
found in the sizes of the motor units and different types of muscles (Kernell,
2006). Rather than arising from randomness, diversity was meticulously se-
lected by genes interacting with environments for behaviors that favor sur-
vival. Nature is more clever than we are at deconstraining the constraints
of diverse materials at hand to achieve the desired level of performance.

Other types of diversity relevant to reaching include the extreme size
diversity in human skeletons and athletic training. Diversity in skeletons,
ranging from fingers to hand to shoulder, allows us to combine arms
for large movements with hands and fingers for fine articulation. This
diversity is reminiscent of how travel is optimized using diverse means
of transportation, allowing travel time to scale according to the fastest
form of transportation (flying) and accuracy to scale according to most
accurate means (walking). Diverse training in speed, accuracy, endurance,
and adaptation is essential to realize DeSS in elite athletic competitions.
This regimen derives from sports science on periodization, which uses
diverse training schedules (load, sets, and repetitions) to optimize the
highly diverse biological mechanisms underlying peak performance and
prevent the onset of deleterious side effects from overtraining (Turner,
2011). Even golfers use a variety of clubs to get a small ball into a distant,
tiny hole: innacurate drivers for long distances, more accurate irons to
reach broad greens, and precision putters to sink the hole. There are many
other specialty clubs for problematic lies like sand traps.

There are many other logarithmic laws in nature (and their power law
versions) (Olsman & Goentoro, 2016): The Weber-Fechner law for the rela-
tion between the physical change in a stimulus and the perceived change
in human perception (Fechner, 1966); Ricco’s law for visual target detection
for unresolved targets (Riccò, 1877); Accot-Zhai’s law for steering (a gener-
alization of Fitts’ law for 2D environments; Accot & Zhai, 1997); the spacing
effect of Ebbinghaus for long-term recall from memory (Ebbinghaus, 1885);
and the Hick-Hyman law for the logarithmic increase in decision-time to
the number of choices (Hick, 1952; Hyman, 1953). These laws have been ex-
tensively studied from the perspective of information constraints. As with
Fitts’ law, developing microscopic theory and mechanistic models for these
laws could reveal underlying relations between the component constraints
and provide new perspectives on system behaviors.

Although this article has focused on the diversity of components within
a single control layer, it is important to highlight the benefits of diver-
sity across control layers and subsystems. For example, Nakahira et al.
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Diversity Deconstrains Component Limitations in Sensorimotor Control 1803

(2021) studied the layered control architectures used in mountain biking,
including oculomotor control that combines a fast vestibular feedforward
system for stabilizing against head motion and a slower cortical feedback
loop through the visual cortex for tracking moving objects. More broadly,
nature employs diversity both within and between control layers, utilizing
diversity-enabled sweet spots to overcome the limitations imposed by se-
vere resource and component constraints in sensorimotor control. This per-
spective of leveraging diversity both within and across control layers offers
valuable insights for designing robust autonomous systems with low-cost
hardware and constrained onboard resources. Such designs may allow sys-
tem trade-offs to be improved fundamentally, while traditional calibration-
based engineering approaches commonly optimize parameters within ex-
isting trade-offs. Similarly, some of the brittleness observed in deep learning
systems with homogeneous components could be mitigated by incorporat-
ing components with diverse time delays, signaling rates, and precision.
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