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Introduction 

"Learningu is a term used to describe a wide range of 

adaptive animal behaviors. The focus of studies on the neural 

substrates for these behaviors is generally at the cellular and 

molecular levels. An animal's behavior, however, is the result 

of its entire central nervous system interacting with the 

environment, and there are many levels of organization between 

the molecular and systems levels, as shown in Fig 1 [I]. We need 

to understand each of these levels and how they are interrelated 

to fully understand the fundamental basis for learning and 

memory. I summarize here some challenging problems and recent 

progress toward a new synthesis of how, and why, animals learn. 

At what levels have common principles of learning and memory 

been found across species? Yadin Dudai (this volume) presented 

evidence for common intracellular signaling pathways that may 

underlie changes in the responsiveness of neurons in flies, 

slugs, and mammals. Eric Kandel and his colleagues have 

suggested that these pathways form an "alphabet" of molecular 
, 

mechanisms that are preserved throughout phylogeny, just as the 

mechanisms for generating action potentials, first uncovered in 

the squid, appear to be universal [21 . This possibility was 

strengthened by the discovery that learning mutations in 

Drosophila affect the same molecules that important for learning 

in Aplysia (Kandel, this volume) . Davis (this volume) has shown 

that some of these molecules are also expressed in the mushroom 

body, an interesting region of the insect brain that is 

particularly well developed in social insects. Nature tends to 

be conservative, but innovations do occur. The NMDA receptor, 

which mediates one form of long-term potentiation in vertebrates, 

is such an evolutionary innovation, although precursors of this 

receptor may be present in invertebrates [3]. 

A well-studied form of learning in humans is the recali- 
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Figure 1: Levels of investigation in the nervous system. The spatial scales at 
which anatomical organizations can be identified varies over many orders of 
magnitude. Icons to the right represent structures at distinct levels: (top) 
a subset of visual areas in visual cortex; (middle) a network model of how 
ganglion cells could be connected to simple cells in visual cortex, and (bottom) 
a chemical synapse. 

bration of visuo-motor coordination (Glickstein, this volume). 

We should expect the locus of learning to be widespread in the 

brain, even for this relatively simple form of adaptation. There 

has been a vigorous debate regarding the anatomical structures 

where the adaptive changes occur in the vestibulo-ocular reflex, 

which helps to stabilize images on the retina during head 

movements (Ito, this volume) . Synapses in both the cerebellum 

and brainstem may be involved and there is evidence for both 

locations [ 4 ] .  It generally has been assumed that the long-term 

gain changes of the vestibulo-ocular reflex must be at synapses, 



but an alternative possibility has recently been suggested that 

involves changes in the time courses of neural responses [ 5 1 .  

The dynamics of neural networks opens up new ways to look at old 

problems. 

Universal learning principles may also arise at the level of 

neural systems. Survival depends on learning and memory in the 

context of perception and action. Rewarding sensory stimuli such 

as food and water strongly affect behavior; other sensory 

stimuli, through contingent association, can also modify 

behavior. We have recently developed a systems-level model of 

predictive learning based on the regulation of learning and 

memory by diffuse ascending neurotransmitter systems, arising 

from a relatively small number of neurons in the brainstem, which 

project throughout large regions of the forebrain [6, 71. These 
I 

include the noradrenergic system arising from the locus 
I 

I 
coeruleus, the serotonergic projections from the Raphe nuclei, a 

histaminergic system arising from the hypothalamus, and 

I 
dopaminergic projections from the substantia nigra and the 

ventral tegmental area. Similar diffuse neurotransmitter systems 

are found in invertebrates that may also regulate learning and 

memory. 

A single neuron has recently been identified in honeybees 

which may be homologous in function with the dopaminergic neurons 

in the ventral tegmental area of vertebrates. Called VUMmxl, 

this octopaminergic neuron projects axonal arborizations widely 

throughout the entire bee bra'in. Intracellular recordings from 

VUMmxl support its role in mediating reinforcement learning [8,  

91 . When paired with sucrose, an odor that previously had no 

effect on proboscis extension reliably elicits extension. Hammer 

has shown that the firing of WMmxl by current injection can 

substitute for sucrose in a conditioning experiment: after 

pairing of VUMmxl activation, the odor by itself subsequently 

elicits proboscis extension. Thus, the activity of VlRvImxl can 

substitute for the reinforcing stimulus. 

Dayan and Montague have recently modeled the foraging 

behavior of bees using reinforcement learning [lo] . The model is 
based on the principle of prediction by temporal differences 111, 

121. There is a central role in the model for WMmxl, which is 
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Figure 2: Neural architecture for a model of bee foraging. Predictions about 
future expected reinforcement are made in the brain using a diffuse 
neurotransmitter system. Sensory input drives the units B and Y representing 
blue and yellow flowers. These units project to a reinforcement neuron P through 
a set of plastic weights (filled circles ws and wy) and to an action selection 
system. S provides input to R and fires while the bee sips the nectar. R 
projects its output r, through a fixed weight to P. The plastic weights onto P 
implement predictions about future reward and P's output is sensitive to temporal 
changes in its input. The outputs of P influence learning and also the selection 
of actions such as steering in flight and landing. Lateral inhibition (dark 
circle) in the action selection layer performs a winner-takes-all. Before 
encountering a flower and its nectar, the output of P will reflect the temporal 
difference only between the sensory inputs B and Y. During an encounter with a 
flower and nectar, the prediction error 6,is determined by the output of B or Y 
and R, and learning occurs at connections ws and wY. These strengths are modified 
according to the correlation between presynaptic activity and the prediction 
error 6, produced by neuron P. Before encountering a flower and its nectar, the 
output of P will reflect the temporal difference only between the sensory inputs 
B and Y. During an encounter yith a flower and nectar, the prediction error 6, is 
determined by the output of B or Y and R, and learning occurs at connections * 
and wy. These strengths are modified according to the correlation between 
presynaptic activity and the prediction error 6, produced by neuron P. Simulations 
of this model account for a wide range of observations of bee preference, 
including aversion for risk (from reference 10). 

responsible for predicting the reward value of incoming sensory 

stimuli (Fig. 2). If an odor, for example, temporally precedes 

the delivery of 'nectar, then through a predictive form of the 

Hebbian learning algorithm, the inputs to VUMmxl are strengthened 

(Fig. 3) . This learning algorithm is Hebbian since it depends on 
the conjunction of pre- and postsynaptic activity [I] ; however, 

the postsynaptic activity is not the summed synaptic input, but 

the prediction error, calculated as the time derivative of the 

summed input, including input from the unconditioned reward 

stimulus. This form of Hebbian synaptic plasticity is predictive 
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Figure 3: Learning algorithm for a predictive hebbian synapse. The goal of the 
neuron is to predict the reinforcement signal, r,, by changing the weights, w,, 
on the sensory inputs. The summed input to the cell is y, and the output of the 
cell is its time difference, 6,. The hebbian algorithm for the change in a weight 
Aw, depends on the conjunction of the recent presynapatic activity for input x, 
and the output of the cell. This is a causal algorithm because of the 
difference: the reinforcement r, at time t is compared with the sensory input at 
the previous time step. The changes in the strength of the weight drive this 
difference to zero, so that the weights become a prediction of future 
reinforcement associated with the sensory input (from reference 10). 

in the sense that only sensory inputs that occur before a 

reinforcing stimulus are strengthened; this temporal asymmetry is 

a hallmark of classical conditioning and has been demonstrated 

elegantly in bee learning [13]. This model accounts for a large 

number of behavioral experiments on bee learning, including risk 

aversion behavior 1141 . 
Recordings from single neurons in the ventral tegmental area 

of primates have uncovered firing patterns to rewarding stimuli 

that are analogous to those found in VUMmxl in bees 115, 161. 

Early in learning, these dopaminergic neurons fire reliably to 

reward, but later in learning they no longer respond directly to 

the reward; instead they respond to the earlier sensory stimuli 

that reliably predict the reward. This is what a predictive 

Hebbian learning rule (Fig. 3), which modifies the inputs to 

these neurons, would produce and underlies the models explanation 

for blocking and secondary reinforcement in classical 

conditioning. The outputs from dopaminergic neurons in the 

ventral tegmental area, which project to the nucleus accumbens 



and to the prefrontal cortex, may therefore carry information 

about predicted error of the reward value of the sensory stimuli. 

To complete the comparison with VUMmxl in bees, it has recently 

been shown that stimulation of the VTA can substitute for reward 

[17]. Predictive Hebbian learning may be a universal mechanism 

that is important for orienting animals to stimuli that lead to 

future reward. The brain may be organized to make predictions 

about the importance of sensory stimuli for survival in an 

uncertain world and use these predictions to act appropriately. 

This principle provides computational explanations for many 

otherwise puzzling facts about learning and the brain from the 

molecular to the systems levels. 

The development of the nervous system also offers important 

clues to learning since many of the same mechanisms that organize 

neural interactions during development are also used, in modified 

forms, in adult brains. In particular, the same diffuse 

ascending systems, such as the noradrenergic and cholinergic 

projections, used to regulate learning in the adult are also 

essential for the neural plasticity observed during development. 

A second common theme is the use of correlated neural activity 

for the precise development of maps between visual areas 1181. 

Hebbian synaptic plasticity may be used to refine the topography 

of visual maps [I91 and to form the properties of cortical 

neurons 1211. The variety of cortical areas and response 

properties of cortical neurons may depend on gating of the 

learning by diffuse neurotransmitter systems [6, 7, 221 and 

changes in the visual inputs that occur at birth [231. The 

development of auditory maps of space in owls is a favorable 

model system for studying map registration between the visual and 

auditory systems (Brainard, this volume). Advances in our 

knowledge of how developmental programs specify neural pathways 

and determine cellular interactions should be of great importance 

for understanding how adaptive changes occur in mature brains. 

Despite all we have learned about learning and memory, there 

are important pieces still missing from the puzzle. All of the 

speakers in this session relied on behavioral data together with 

the anatomical substrate to provide a systems-level framework 

within which to study learning. There is, however, a large gap 



between behavioral observations and data showing correlations 

with learning at the, cellular and molecular levels. In 

particular, there is a major link missing at the network level, 

which is characterized by highly interacting populations of 

neurons (Fig. 1) . New experimental techniques are needed to 

explore the network gap and new models are needed that provide 

insights into the properties of interacting neural populations. 

Our models of classical conditioning in bee foraging and the 

development of neocortex are steps in these directions [6, 7, 

101 . 

References 

Churchland PS and Sejnowski TJ (1992) The Computational 
Brain, Cambridge, MA: MIT Press. 

Hawkins RD and Kandel ER (1984) Is there a cell-biological 
alphabet for simple forms of learning? Psychological Review 
91: 375-391. 

Dale N and Kandel ER (1993) L-Glutamate may be the fast 
excitatory transmitter of Aplysia sensory neurons. 
Proceedings of the National Academy of Sciences USA 90: 
7163-7167. 

Miles FA and Lisberger SG (1981) Plasticity in the 
vestibulo-ocular reflex: a new hypothesis. Annual Review of 
Neuroscience 4 :  273-299. 

I 
i 5. Lisberger SG and Sejnowski TJ (1992) Motor learning in a 
I recurrent network model based on the vestibulo-ocular 

reflex. Nature 360: 159-161. 
I 

I 6. Montague PR, Dayan P, Nowlan SJ, Pouget A and Sejnowski TJ 

i (1993) Using aperiodic reinforcement for directed 
self-organization during development, In: CL Giles, SJ 
Hanson and JD Cowan (Eds. ) Advances in Neural Information 

! Processing Systems 5, Morgan Kaufman Publishers,San Mateo, 
CA, pp. 969-976. 

i 

7. Quartz SR, Dayan P, Montague PR and Sejnowski TJ (1992) 
Expectation learning in the brain using diffuse ascending 
projections, Society for Neuroscience Abstracts . 

8. Hammer M. Thesis, Frei Universitat, Thesis, Berlin (1991). 

9. Hammer M (1993) Substitution of the unconditioned stimulus 
by activity of an identified neuron in associative olfactory 

) learning in honeybees. submitted for publication. 

10 Dayan P, Montague PR and Sejnowski TJ. Foraging in an 



uncertain environment using predictive Hebbian learning, 
Science (submitted for publication). 

Sutton RS and Barto AG (1981) Toward a modern theory of 
adaptive networks: expectation and prediction. Psychological 
Review 88: 135-170. 

Sutton RS and Barto AG (1987) A temporal-dif ference model of 
classical conditioning. Proceedings of the Ninth Annual 
Conference of the Cognitive Science Society. Seattle, WA. 
Lawrence Erlbaum Associates: Hillsdale, New Jersey 

Menzel R and Erber J (1978) Scientific American, 239 (1) : 
102-. 

Real LA (1991) Animal choice behavior and the evolution of 
cognitive architecture. Science 253: 980-986. 

Ljunberg T, Apicella P and Schultz W (1992) Responses of 
monkey dopamine neurons during learning of behavioral 
reactions. Journal of Neurophysiology 67: 145-163. 

Schultz W, Apicella P and Ljungberg T (1993) Responses of 
monkey dopamine neurons to reward and conditioned stimuli 
during successive steps of learning a delayed response task. 
Journal of Neuroscience 13: 900-913. 

Castro-Alamancos MA and Borrell J (1992) Facilitation and 
recovery of shuttle box avoidance behavior after frontal 
cortex lesions is induced by a contingent electrical 
stimulation in the ventral tegmental nucleus. Behavioural 
Brain Research, 50: 69-76. 

Shatz CJ (1990) Impulse activity and the patterning of 
connections during CNS development. Neuron 5: 745-756. 

Willshaw DJ and von der Malsberg C (1979) A marker induction 
mechanism for the establishment of ordered neural mappings: 
its application to the retinotectal problem. Philosophical 
Transactions of the Royal Society of London. Series B. 287: 
203-43. 

Miller KD and Stryker MP (1990) Ocular dominance column 
formation: mechanisms and models. In: SJ Hanson and CR 
Olson (Eds.) Connectionist Modeling and Brain Function: The 
Developing Interface. Cambridge, MA: MIT Press 

churchland PS, Ramachandran VS and Sejnowski TJ (1994) A 
critique of pure vision, In: C Koch and J Davis (Eds.) 
Large-Scale Neuronal Theories of the Brain, Cambridge, MA: 
MIT Press. 

Berns et a1 (1993). A correlational model for the 
development of disparity selectivity in visual cortex that 
depends on prenatal and postnatal phases. Proceedings of 
the National Academy of Sciences USA in press. 


