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Abstract 

Neocortical circuits are dominated by massive excitatory feedback: more than 
eighty percent of the synapses made by excitatory cortical neurons are onto other 
excitatory cortical neurons. Why is there such massive recurrent excitation in the 
neocortex and what is its role in cortical computation? Recent neurophysiologi- 
cal experiments have shown that the plasticity of recurrent neocortical synapses 
is governed by a temporally asymmetric Hebbian learning rule. We describe how 
such a rule may allow the cortex to modify recurrent synapses for prediction of in- 
put sequences. The goal is to predict the next cortical input from the recent past 
based on previous experience of similar input sequences. We show that a tempo- 
ral difference learning rule for prediction used in conjunction with dendritic back- 
propagating action potentials reproduces the temporally asymmetric Hebbian plas- 
ticity observed physiologically. Biophysical simulations demonstrate that a net- 
work of cortical neurons can learn to predict moving stimuli and develop direction 
selective responses as a consequence of learning. The space-time response prop- 
erties of model neurons are shown to be similar to those of direction selective cells 
in alert monkey V 1. 

1 INTRODUCTION 

The neocortex is characterized by an extensive system of recurrent excitatory connections between 
neurons in a given area. The precise computational function of this massive recurrent excitation re- 
mains unknown. Previous modeling studies have suggested a role for excitatory feedback in ampli- 
fying feedforward inputs [I]. Recently, however, it has been shown that recurrent excitatory connec- 
tions between cortical neurons are modified according to a temporally asymmetric Hebbian learning 
rule: synapses that are activated slightly before the cell fires are strengthened whereas those that are 
activated slightly after are weakened [2, 31. Information regarding the postsynaptic activity of the 
cell is conveyed back to the dendritic locations of synapses by back-propagating action potentials 
from the soma. 

In this paper, we explore the hypothesis that recurrent excitation subserves the function of prediction 
and generation of temporal sequences in neocortical circuits [4,5,6]. We show that a temporal differ- 
ence based learning rule for prediction applied to backpropagating action potentials reproduces the 
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experimentally observed phenomenon of asymmetric Hebbian plasticity. We then show that such a 
learning mechanism can be used to learn temporal sequences and the property of direction selectivity 
emerges as a consequence of learning to predict moving stimuli. Space-time response plots of model 
neurons are shown to be similar to those of direction selective cells in alert macaque V1. 

2 TEMPORALLY ASYMMETRIC HEBBIAN PLASTICITY AND 
TEMPORAL DIFFERENCE LEARNING 

To accurately predict input sequences, the recurrent excitatory connections in a network need to be 
adjusted such that the appropriate set of neurons are activated at each time step. This can be achieved 
by using a "temporal-difference" (TD) learning rule [5, 71. In this paradigm of synaptic plastic- 
ity, an activated synapse is strengthened or weakened based on whether the difference between two 
temporally-separated predictions is positive or negative. This minimizes the errors in prediction by 
ensuring that the prediction generated by the neuron after synaptic modification is closer to the de- 
sired value than before (see [7] for more details). 

In order to ascertain whether temporally-asymmetric Hebbian learning in cortical neurons can be in- 
terpreted as a form of temporal-difference learning, we used a two-compartment model of a cortical 
neuron consisting of a dendrite and a soma-axon compartment. The compartmental model was based 
on a previous study that demonstrated the ability of such a model to reproduce a range of cortical re- 
sponse properties 181. The presence of voltage-activated sodium channels in the dendrite allowed 
back-propagation of action potentials from the soma into the dendrite. To study plasticity, excitatory 
postsynaptic potentials (EPSPs) were elicited at different time delays with respect to postsynaptic 
spiking by presynaptic activation of a single excitatory synapse located on the dendrite. Synaptic 
currents were calculated using a kinetic model of synaptic transmission with model parameters fitted 
to whole-cell recorded AMPA currents (see [9] for more details). Synaptic plasticity was simulated 
by incrementing or decrementing the value for maximal synaptic conductance by an amount propor- 
tional to the temporal-difference in the postsynaptic membrane potential at time instants t + At and 
t - At for presynaptic activation at time t. The delay parameter At was set to 5 ms to yield results 
consistent with previous physiological experiments [2]. Presynaptic input to the model neuron was 
paired with postsynaptic spiking by injecting a depolarizing current pulse (10 ms, 200 PA) into the 
soma. Changes in synaptic efficacy were monitored by applying a test stimulus before and after pair- 
ing, and recording the EPSP evoked by the test stimulus. 

Figure 1A shows the results of pairings in which the postsynaptic spike was triggered 5 ms after and 5 
ms before the onset of the EPSP respectively. While the peak EPSP amplitude was increased 58.5% 
in the former case, it was decreased 49.4% in the latter case, qualitatively similar to experimental ob- 
servations [2]. The critical window for synaptic modifications in the model depends on the parameter 
At as well as the shape of the back-propagating action potential. This window of plasticity was ex- 
amined by varying the time interval between presynaptic stimulation and postsynaptic spiking (with 
At = 5 ms). As shown in Figure lB, changes in synaptic efficacy exhibited a highly asymmetric 
dependence on spike timing similar to physiological data [2]. Potentiation was observed for EPSPs 
that occurred between 1 and 12 ms before the postsynaptic spike, with maximal potentiation at 6 ms. 
Maximal depression was observed for EPSPs occurring 6 ms after the peak of the postsynaptic spike 
and this depression gradually decreased, approaching zero for delays greater than 10 ms. As in rat 
neocortical neurons, Xenopus tectal neurons, and cultured hippocampal neurons (see [2]), a narrow 
transition zone (roughly 3 ms in the model) separated the potentiation and depression windows. 

3 RESULTS 

3.1 Learning Sequences using Temporally Asymmetric Hebbian Plasticity 

To see how a network of model neurons can learn sequences using the learning mechanism described 
above, consider the simplest case of two excitatory neurons N1 and N2 connected to each other, re- 
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Figure 1: Synaptic Plasticity in a Model Neocortical Neuron. (A) (Left Panel) EPSP in the model neuron 
evoked by a presynaptic spike (Sl) at an excitatory synapse ("before"). Pairing this presynaptic spike with post- 
synaptic spiking after a 5 ms delay ("pairing") induces long-term potentiation ("after"). (Right Panel) If presy- 
naptic stimulation (S2) occurs 5 ms after postsynaptic firing, the synapse is weakened resulting in a correspond- 
ing decrease in peak EPSP amplitude. (B) Critical window for synaptic plasticity obtained by varying the delay 
between pre- and postsynaptic spiking (negative delays refer to presynaptic before postsynaptic spiking). 

ceiving inputs from two separate input neurons I1 and I2 (Figure 2A). Suppose input neuron I1 fires 
before input neuron 12, causing neuron N1 to fire (Figure 2B). The spike from N1 results in a sub- 
threshold EPSP in N2 due to the synapse S2. If input arrives from I2 any time between 1 and 12 
ms after this EPSP and the temporal summation of these two EPSPs causes N2 to fire, the synapse 
S2 will be strengthened. The synapse S1, on the other hand, will be weakened because the EPSP 
due to N2 arrives a few milliseconds after N1 has fired. Thus, on a subsequent trial, when input I1 
causes neuron N1 to fire, it in turn causes N2 to fire several milliseconds before input 12 occurs due 
to the potentiation of the recurrent synapse S2 in previous trial(s) (Figure 2C). Input neuron I2 can 
thus be inhibited by the predictive feedback from N2 just before the occurrence of imminent input 
activity (marked by an asterisk in Figure 2C). This inhibition prevents input 12 from further exciting 
N2. Similarly, a positive feedback loop between neurons N1 and N2 is avoided because the synapse 
S 1 was weakened in previous trial(s) (see arrows in Figures 2B and 2C). Figure 2D depicts the pro- 
cess of potentiation and depression of the two synapses as a function of the number of exposures to 
the 11-12 input sequence. The decrease in latency of the predictive spike elicited in N2 with respect 
to the timing of input I2 is shown in Figure 2E. Notice that before learning, the spike occurs 3.2 ms 
after the occurrence of the input whereas after learning, it occurs 7.7 ms before the input. 

3.2 Emergence of Direction Selectivity 

In a second set of simulations, we used a network of recurrently connected excitatory neurons as 
shown in Figure 3A receiving retinotopic sensory input consisting of moving pulses of excitation 
(8 ms pulse of excitation at each neuron) in the rightward and leftward directions. The task of the 
network was to predict the sensory input by learning appropriate recurrent connections such that a 
given neuron in the network starts firing several milliseconds before the arrival of its input pulse of 
excitation. The network was comprised of two parallel chains of neurons with mutual inhibition (dark 
arrows) between corresponding pairs of neurons along the two chains. The network was initialized 
such that within a chain, a given excitatory neuron received both excitation and inhibition from its 
predecessors and successors (Figure 3B). Excitatory and inhibitory synaptic currents were calculated 
using kinetic models of synaptic transmission based on properties of AMPA and GABAA receptors as 
determined from whole-cell recordings [9]. Maximum conductances for all synapses were initialized 
to small positive values (dotted lines in Figure 3C) with a slight asymmetry in the recurrent excitatory 
connections for breaking symmetry between the two chains. 

The network was exposed alternately to leftward and rightward moving stimuli for a total of 100 tri- 
als. The excitatory connections (labeled 'EXC' in Figure 3B) were modified according to the asym- 



1-22 1999 6th Joint Symposiunz on Neural Cotnprttatiotz Proceedings 

0 10 20 30 40 

Time (number of trials) 

Excitatory Neuron N I  Excitatory Neuron N2 
0.03 

,̂  0.025- 
3. - 

0.02 
5 
M 

Input Neuron I I Input Ncuron I2 0.015- 

f; 
0 0.01 .- Input I Input 2 - 
;L. 
V) B C 

Before Learning After Learning 
0 

Figure 2: LeaPning to Predict using Temporally Asymmetric Hebbian Learning. (A) Network of two 
model neurons N1 and N2 recurrently connected via excitatory synapses S1 and S2, with input neurons I1 and 
12. N1 and N2 inhibit the input neurons via inhibitory interneurons (darkened circles). (B) Activity in the net- 
work elicited by the sequence I1 followed by 12. (C) Activity in the network elicited by the same sequence after 
40 trials of learning. Due to the strengthening of synapse S2, N2 now fires several milliseconds before the ex- 
pected arrival time of input I2 (dashed line), allowing it to inhibit I2 (asterisk). Synapse S1 has been weakened, 
preventing re-excitation of N1 (downward arrows show decrease in EPSP). (D) Potentiation and depression of 
synapses S1 and S2 respectively during the course of learning. Synaptic strength was defined as maximal synap- 
tic conductance in the kinetic model of synaptic transmission [9]. (E) Latency of predictive spike in N2 during 
the course of learning measured with respect to the time of input spike in I2 (dotted line). 
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Figure 3: Direction Selectivity in the Model. (A) A model network consisting of two chains of recurrently 
connected neurons receiving retinotopic inputs. A given neuron receives recurrent excitation and recurrent inhi- 
bition (white-headed arrows) as well as inhibition (dark-headed arrows) from its counterpart in the other chain. 
(B) Recurrent connections to a given neuron (labeled '0') arise from 4 preceding and 4 succeeding neurons in 
its chain. Inhibition at a given neuron is mediated via a GABAergic interneuron (darkened circle). (C) Synaptic 
strength of recurrent excitatory (EXC) and inhibitory (INH) connections to neurons N1 and N2 before (dotted 
lines) and after learning (solid lines). Synapses were adapted during 100 trials of exposure to alternating left- 
ward and rightward moving stimuli. (D) Responses of neurons N1 and N2 to rightward and leftward moving 
stimuli. As a result of learning, neuron N1 has become selective for rightward motion (as have other neurons 
in the same chain) while neuron N2 has become selective for leftward motion. In the preferred direction, each 
neuron starts firing several milliseconds before the actual input arrives at its soma (marked by an asterisk) due 
to recurrent excitation from preceding neurons. The dark triangle represents the start of input stimulation in the 
network. 
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metric Hebbian learning rule in Figure 1B while the excitatory connections onto the inhibitory in- 
terneuron (labeled 'INH') were modified according to an asymmetric anti-Hebbian learning rule that 
reversed the polarity of the rule in Figure 1B. The synaptic conductances learned by two neurons 
(marked N1 and N2 in Figure 3A) located at corresponding positions in the two chains after 100 trials 
of exposure to the moving stimuli are shown in Figure 3C (solid line). Initially, for rightward motion, 
the slight asymmetry in the initial excitatory connections of neuron N1 allows it to fire slightly ear- 
lier than neuron N2 thereby inhibiting neuron N2. Additionally, since the EPSPs from neurons lying 
on the left of N1 occur before N1 fires, the excitatory synapses from these neurons are strengthened 
while the excitatory synapses from these same neurons to the inhibitory interneuron are weakened ac- 
cording to the two learning rules mentioned above. On the other hand, the excitatory synapses from 
neurons lying on the right side of N1 are weakened while inhibitory connections are strengthened 
since the EPSPs due to these connections occur after N1 has fired. The synapses on neuron N2 and 
its associated interneuron remain unaltered since there is no postsynaptic firing (due to inhibition by 
N1) and hence no back-propagating action potentials in the dendrite. As shown in Figure 3C, after 
100 trials, the excitatory and inhibitory connections to neuron N1 exhibit a marked asymmetry, with 
excitation originating from neurons on the left and inhibition from neurons on the right. Neuron N2 
exhibits the opposite pattern of connectivity. As expected, neuron N1 was found to be selective for 
rightward motion while neuron N2 was selective for leftward motion (Figure 3D). Moreover, when 
stimulus motion is in the preferred direction, each neuron starts firing several milliseconds before 
the time of arrival of the input stimulus at its soma (marked by an asterisk) due to recurrent exci- 
tation from preceding neurons. Conversely, motion in the non-preferred direction triggers recurrent 
inhibition from preceding neurons as well as inhibition from the active neuron in the corresponding 
position in the other chain. Thus, the learned pattern of connectivity allows the direction selective 
neurons comprising the two chains in the network to conjointly code for and predict the moving in- 
put stimulus in each direction. The average firing rate of neurons in the network for the preferred 
direction was 75.7 Hz, which is in the range of cortical firing rates for moving bar stimuli. Assuming 
a 200 pm separation between excitatory model neurons in each chain and utilizing known values for 
the cortical magnification factor in monkey striate cortex, one can estimate the preferred stimulus 
velocity of model neurons to be 3.1'1s in the fovea and 27.9'1s in the periphery (at an eccentricity of 
8"). Both of these values fall within the range of monkey striate cortical velocity preferences [ l l ] .  

The model predicts that the neuroanatomical connections for a direction selective neuron should ex- 
hibit a pattern of asymmetrical excitation and inhibition similar to Figure 3C. A recent study of di- 
rection selective cells in awake monkey V1 found excitation on the preferred side of the receptive 
field and inhibition on the null side consistent with the pattern of connections learned by the model 
[I 11. For comparison with this experimental data, spontaneous background activity in the model was 
generated by incorporating Poisson-distributed random excitatory and inhibitory alpha synapses on 
the dendrite of each model neuron. Post stimulus time histograms (PSTHs) and space-time response 
plots were obtained by flashing optimally oriented bar stimuli at random positions in the cell's acti- 
vating region. As shown in Figure 4, there is good qualitative agreement between the response plot 
for a complex cell and that for the model. Both space-time plots show a progressive shortening of 
response onset time and an increase in response transiency going in the preferred direction: in the 
model, this is due to recurrent excitation from progressively closer cells on the preferred side. Firing 
is reduced to below background rates 40-60 ms after stimulus onset in the upper part of the plots: in 
the model, this is due to recurrent inhibition from cells on the null side. The response transiency and 
shortening of response time course appears as a slant in the space-time maps, which can be related 
to the neuron's velocity sensitivity [ I  11. 

4 CONCLUSIONS 

Our results show that a network of recurrently connected neurons endowed with a temporal- 
difference based asymmetric Hebbian learning mechanism can learn a predictive model of its spa- 
tiotemporal inputs. When exposed to moving stimuli, neurons in a simulated network learned to fire 
several milliseconds before the expected arrival of an input stimulus and developed direction selec- 
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Figure 4: Comparison of Monkey and Model Space-Time Response Plots. (Left) Sequence of PSTHs ob- 
tained by flashing optimally oriented bars at 20 positions across the 5"-wide receptive field (RF) of a complex 
cell in alert monkey V1 (from [ll]). The cell's preferred direction is from the part of the RF represented at 
the bottom towards the top. Flash duration = 56 ms; inter-stimulus delay = 100 ms; 75 stimulus presentations. 
(Right) PSTHs obtained from a model neuron after stimulating the chain of neurons at 20 positions to the left and 
right side of the given neuron. Lower PSTHs represent stimulations on the preferred side while upper PSTHs 
represent stimulations on the null side. 

tivity as a consequence of learning. The model predicts that a direction selective neuron should start 
responding several milliseconds before the preferred stimulus enters its retinal input dendritic field 
(such predictive neural activity has recently been reported in retinal ganglion cells [lo]). 

Temporally asymmetric Hebbian learning has previously been suggested as a possible mechanism 
for sequence learning in the hippocampus [4] and as an explanation for the asymmetric expansion of 
hippocampal place fields during route learning 1121. Some of these theories require relatively long 
temporal windows of synaptic plasticity (on the order of several hundreds of milliseconds) [4] while 
others have utilized temporal windows in the sub-millisecond range for coincidence detection [3]. 
Sequence learning in our model is based on a window of plasticity in the 10 to 15 ms range which is 
roughly consistent with recent physiological observations [2]. 

The idea that prediction and sequence learning may constitute an important goal of the neocortex has 
previously been suggested in the context of statistical and infonnation theoretic models of cortical 
processing [4, 5, 61. Our biophysical simulations suggest a possible implementation of such mod- 
els in cortical circuitry. Given the universality of the problem of encoding and generating temporal 
sequences in both sensory and motor domains, the hypothesis of predictive sequence learning in re- 
current neocortical circuits may help provide a unifying principle for studying cortical structure and 
function. 
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