Parkinson’s disease (PD) is a costly, chronic, neurodegenerative disorder that affects tens of millions of people worldwide, yet no biomarker has been established to date. PD is known to lead to marked alterations in cortical-basal ganglia activity and is characterized by motor impairments such as bradykinesia, muscle rigidity, resting tremor, and postural instability. Using non-linear Delay Differential Analysis (DDA) for time-domain classification of PD patients on and off dopaminergic therapy (PD-on, PD-off, respectively, n=9) from healthy age-matched controls (CO, n=10), we hypothesize that individual trials of EEG data can be used to classify CO from PD-on/off. Surface EEG activity was recorded from 64-channels in all subjects during a reaching task to grasp rectangular virtual objects with haptic feedback provided. A tone was provided to indicate the start of the trial, and two data sets, one full second prior to the tone (resting state) and half a second after the tone were used for classification (post-tone). The virtual object was unexpectedly rotated 90 degrees in the frontal plane...
on a subset (33%) of trials and two additional data sets of behavioral and EEG data, time-locked to the onset of the object perturbation are considered. Resting state EEG provided a relatively uniform classification performance for CO vs. all PD patients and poorer performance within PD patients. In contrast to resting state, post-tone EEG was shown to provide increased classification performance towards occipital areas, consistent with a PD patient’s increased reliance on visual feedback processes during complex motor tasks. Task-related changes in EEG after the onset of the perturbation were also identified that merit further exploration with behavioral changes due to PD. Thus, non-linear features in EEG data may provide a potential biomarker for Parkinson’s disease based on single 1 s or 1/2 s trials of EEG data that are sensitive to changes in a virtual grasping movement.

Disclosures:
M.E. Hernandez: None.
J. Weyhenmeyer: None.
C. Lainscsek: None.
T.J. Sejnowski: None.
H. Poizner: None.

Keyword(s):
PARKINSON’S DISEASE
EEG
MOTOR CONTROL

Support:
NSF Grant SMA-1041755
NSF Grant ENG-1137279 (EFRI M3C)
ONR MURI Award No.:N00014-10-1-0072
Howard Hughes Medical Institute