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A B S T R A C T

Background: Sleep spindles are involved in memory consolidation and other
cognitive functions. Numerous automated methods for detection of spindles have been proposed; most of these rely on spectral analysis in some form. However, none
of these approaches are ideal, and novel approaches to the problem could provide additional insights.
New method: Here, we apply delay differential analysis (DDA), a time-domain technique based on nonlinear dynamics to detect sleep spindles in human intracranial
sleep data, including laminar electrode, stereoelectroencephalogram (sEEG), and electrocorticogram (ECoG) recordings.
Results: We show that this approach is computationally fast, generalizable, requires minimal preprocessing, and provides excellent agreement with human scoring.
Comparison with existing methods: We compared the method with established methods on a set of intracranial recordings and this method provided the highest
agreement with human expert scoring when evaluated with F1 score while being the second-fastest to run. We also compared the results on the DREAMS surface EEG
data, where the method produced a higher average F1 score than all other tested methods except the automated detections published with the DREAMS data. Further,
in addition to being a fast and reliable method for spindle detection, DDA also provides a novel characterization of spindle activity based on nonlinear dynamical
content of the data.
Conclusions: This additional, non-frequency-based perspective could prove particularly useful for certain atypical spindles, or identifying spindles of different types.

1. Introduction

1.1. Sleep spindles

Sleep spindles are discrete events consisting of 11-16 Hz oscillations
(the precise frequency range varies across subjects) recorded primarily
in stage 2 non-REM sleep, and to a lesser extent in stage 3 non-REM
sleep (Berry et al., 2012). Spindles display a characteristic waxing and
waning pattern in amplitude, and generally last between 0.3 and 3 s,
recurring every 5–15 s (Bonjean et al., 2012; Leresche et al., 1991).
Sleep spindles arise from the activity of thalamocortical circuitry. They
have become a subject of study for their potential roles in memory

consolidation and other cognitive functions (Sejnowski and Destexhe,
2000; Schabus et al., 2004; Fogel et al., 2007), as well as in psychiatric
and neurological disorders (Ferrarelli et al., 2007; Petit et al., 2004;
Ktonas et al., 2007).

Numerous methods for automated spindle detection have been
proposed, most of which rely on spectral analysis in some form (Warby
et al., 2014; O’Reilly and Nielsen, 2015). Here, we propose an alter-
native approach using a nonlinear time-domain algorithm which is
computationally fast and therefore capable of detecting spindles in real
time.
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1.2. Delay differential analysis

Delay differential analysis (DDA) is a time-domain classification
framework based on embedding theory in nonlinear dynamics
(Kremliovsky and Kadtke, 1997; Lainscsek et al., 2013). An embedding
reveals the nonlinear invariant properties of an unknown dynamical
system (here the brain) from a single time series (here intracranial re-
cordings). The embedding in DDA serves then as a sparse nonlinear
functional basis onto which the data are mapped (Fig. 1). Since the
basis is built on the dynamical structure of the data, preprocessing (such
as filtering) is not necessary. DDA yields a small number of features
(around 4), far fewer than traditional spectral techniques, which pro-
vide a power at each frequency (often 100–200 frequencies). In either
case, the size of the feature set might vary depending on the parameters
used. Also, either set of features can be combined or collapsed to yield a
measure that can be thresholded. However, working with a constrained
feature space is often desirable. This approach greatly reduces the risk
of overfitting, and therefore helps to ensure that a model that was se-
lected using a single EEG channel from one subject can be applied to a
wide range of data from different subjects, channels, and recording
systems.

One can also view DDA models as sparse Volterra series (Volterra,
1887, 1959). A general nonlinear real-valued function can be expressed
as a Taylor series expansion of functionals of increasing complexity
around a fixed point. Rather than retain all low-order terms in the ex-
pansion, DDA imposes restricted complexity on the analysis by using a
low-dimensional sparse delay differential equation (DDE) model. In a
model of this type, linear and nonlinear components of the data are
analyzed in an interconnected manner. This reduces the computational
load, and further, by leaving some of the non-relevant dynamics

unmodeled, it is possible to greatly reduce the effect of artifacts and
other signals unrelated to the particular classification task of interest.

DDEs combine differential with delay embeddings as a functional
embedding where (non-) linear polynomial functions of the delay terms
are used (Lainscsek et al., 2017). The general form of the DDEs is
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where I is the number of monomials in the model, N is the number of
delays, mn,i is the order of the nth term in the ith monomial, and x n
represents x(t− τn). The time derivative of the data, x t( ), is estimated
with a weighted center derivative (Miletics and Molnárka, 2005):
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where M is the number of points used.
For a given model, we compute a small set of features, which are the

estimated coefficients ai in Eq. (1) as well as the least-squares error. The
error is defined as:
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where K is the number of time points, and x t,n k represents x(tk− τn).

2. Methods

2.1. Data

DDA was applied to laminar, stereoelectroencephalogram (sEEG),

Fig. 1. Delay differential analysis (DDA). For an unknown
dynamical system (such as the brain) from which we can re-
cord a single variable over time (such as ECoG data), em-
bedding theory states that we can recover the nonlinear in-
variant properties of the original system. DDA combines delay
and differential embeddings in a functional form which allows
time-domain classification of the data. For a given polynomial
model form, we estimate the coefficients and least-squares
error, which form a low-dimensional feature space. This figure
is adapted from Lainscsek and Sejnowski (2015).
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and electrocorticogram (ECoG) recordings from patients with in-
tractable epilepsy.

The laminar recordings studied here come from five patients, de-
signated L1 to L5. Recordings and data were obtained under
Institutional Review Board (IRB) approval with informed consent from
participants in accordance with the Declaration of Helsinki.

The additional recordings used for this study consisted of sEEG
(depth electrode) recordings from five patients, designated S1 to S5,
and ECoG recordings from two patients, designated E1 and E2, with
long-standing pharmaco-resistant complex partial seizures. These re-
cordings used a standard clinical recording system (XLTEK, Natus
Medical Inc., San Carlos, CA) with sampling rates of 500, 512, or

1024 Hz. The reference for the sEEG electrodes was an electrode placed
over the C2 spinous process on the posterior neck. For the ECoG (cor-
tical surface electrode) recordings, the reference channel was a strip of
electrodes located outside the dura mater and facing the skull at a re-
gion remote from other grid and strip electrodes. Placement of the in-
traparenchymal (sEEG) electrodes and subdural electrode arrays was
chosen to confirm the hypothesized seizure focus and locate epilepto-
genic tissue in relation to essential cortical areas, thus directing surgical
treatment.

The decision to implant, as well as the electrode targets and the
duration of implantation were entirely clinically based with no input
from this research study. All data were handled following protocols
approved by the IRB of the Massachusetts General Hospital according to
National Institutes of Health guidelines.

sEEG data used for this study consist of three channels from subject
S1, four channels from subject S2, one channel each from subjects S3
and S5, and two channels from subject S4. ECoG data used here consist
of three channels from subject E1 and one channel from subject E2. All
data selected for use in this study were exclusively from stage two sleep,
during time periods when no seizures were occurring.

2.2. Spindle marking

Both the data used for developing the detector and those used for
testing were drawn from human expert-scored intracranial recordings:
23-channel laminar electrodes in five subjects (L1–L5) and single-
channel scored sEEG and ECoG recordings from subjects S1–S5 and
E1–E2. In the laminar data set, the scorer marked a single time point for
each identified spindle based on evaluation of all 23 channels (here
designated type I scoring). In the sEEG and ECoG data, the beginning
and end of all spindles were marked on the basis a single channel (type
II scoring). In type II scoring, therefore, the beginnings of spindles are
defined as the point where spindle oscillations become visually ap-
parent to the scorer, and the end is defined as the point where these
oscillations are no longer apparent. Also, in type II scoring, the scorer
marked all potential spindles, regardless of clarity. By including both
types of human scoring as well as a range of spindle quality, we aim to
develop a robust detector that can function even with non-ideal data.

Since only a single time point was marked in type I scoring, a

Table 1
Human-marked spindle properties for the 15 recordings.

Subject Channelb Type Scoring fs (Hz) Number Mean duration (s) Mean peak freq. (Hz)

L1 1–23, left frontal Laminar I 2000 144 1a 15.0580
L2 1–23, right frontal Laminar I 2000 48 1a 11.8063
L3 1–23, right frontal Laminar I 2000 137 1a 12.8836
L4 1–23, right frontal Laminar I 2000 50 1a 12.4320
L5 1–23, right temporal Laminar I 2000 72 1a 13.2750
S1 1 (RCIN3) sEEG II 500 57 0.84 12.5395
S1 2 (LCIN4) sEEG II 500 135 0.91 12.8115
S1 3 (LSF6) sEEG II 500 47 0.72 12.6363
S2 1 (LCIN3) sEEG II 500 213 1.79 12.7073
S2 2 (LSF3) sEEG II 500 218 1.42 13.1963
S2 3 (RCIN5) sEEG II 500 146 1.25 12.9723
S2 4 (LFR1) sEEG II 500 227 1.57 12.3713
S3 1 (OF7) sEEG II 500 138 0.87 12.7769
S4 1 (RPF5) sEEG II 512 152 1.15 12.7569
S4 2 (ROF4) sEEG II 512 81 0.98 13.9615
S5 1 (RAF6) sEEG II 512 124 0.96 13.0326
E1 1 (GR28) ECoG II 512 82 1.05 12.4093
E1 2 (GR53) ECoG II 512 13 1.36 11.7415
E1 3 (GR38) ECoG II 512 92 1.18 13.2799
E2 1 (AGR52) ECoG II 1024 47 0.71 12.1440

a The mean duration cannot be determined from Type I scoring because only a single time point was marked across all channels (1–23). One second of data is
designated as spindle data for structure selection.

b RCIN – right cingulate, LCIN – left cingulate, LSF – left subfrontal, LFR – left frontal, OF – orbitofrontal, RPF – right posterior frontal, ROF – right orbitofrontal,
RAF – right anterior frontal, GR – grid (subject E1 grid channels 28, 38, and 53 were all located over posterior frontal cortex with 28 the most inferior and 53 the most
superior), AGR – anterior grid (subject E2 anterior grid channel 52 was located over middle posterior frontal cortex).

Fig. 2. Spindle frequencies. For each of the five laminar, five sEEG, and two
ECoG subjects, the peak frequency (between 11 and 17 Hz) was computed for
all human-marked spindles and the mean peak frequency across all spindles is
plotted as one point for each channel. For laminar subjects, five of the channels
are plotted – spindles were marked based on evaluation of all channels. For the
sEEG and ECoG subjects, spindles were marked on an individual-channel basis,
and all scored channels are plotted. Color indicates the type of recording. Note
that laminar recordings were collected from cortex identified as probably epi-
leptogenic.
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window of one second around each marker was taken as the spindle
(that is, the beginning of each spindle was defined as 0.5 s before the
mark and the end was defined as 0.5 s after the mark), and a wider
window of 1-3 s around each marker was excluded from classification
as non-spindle data (only data at least 1.5 s before or after a mark were
considered non-spindle data). Table 1 summarizes the properties of the
marked spindles in both data sets: the recording type (laminar elec-
trodes, sEEG, or ECoG), the scoring type (I or II), the sampling rate fs,
the number of marked spindles, the mean spindle duration, and the
mean peak frequency (between 11 and 17 Hz) for all spindles in each
recording. Since type I scoring involved marking spindles on the basis
of multiple channels, the peak frequencies are computed as the mean of
the peak frequency across the five channels in which spindles are most
visually apparent. The peak frequencies for all channels for each subject
are plotted in Fig. 2.

2.3. Supervised structure selection

Structure selection of the model ultimately relied on data from one
channel from one subject. Since DDA uses specific time delays, ad-
justments need to be made for sampling rate, and to facilitate this, the
model (polynomial form and delays) was selected using data with the
lowest sampling rate in the available data set (this allows for easy ad-
justment to higher sampling rates). Here, we used an sEEG recordings
sampled at 500 Hz. Data from these subjects and channels were divided
into half-second epochs and marked as spindle or non-spindle based on
how each epoch had been marked by a human expert in the manner
described above. Among these 500 Hz recordings, the one for which
spindle and non-spindle epochs proved most separable was used to
select a model for use with new data.

In order to select the model from these training data, the set of
models to be considered was first subjected to constraints based on
model forms that had proven effective in previous applications of DDA,
ensuring the sparsity of the model. The general form of the model
shown in Eq. (1) was constrained to two delays (N≤2), three terms
(I=3), and up to third-order nonlinearities (∑nmn,i≤3). This resulted
in a total of 188 unique DDE model forms, upon which we performed an
exhaustive search. The delays τ1 and τ2 were allowed to vary between
approximately 1 and 80ms at intervals of 1/fs.

We performed repeated random subsampling cross-validation
(Kohavi et al., 1995) to evaluate the performance of each model. This
method involves repeatedly dividing the data at random into training
and testing sets. (Note that throughout we use the terms “training” and
“testing” to refer to these repeated random splits of the data for cross-
validation. New data, not used in the structure selection of a particular
model, are referred to as “validation” data.) This prevents overfitting of
the model and ensures generalizability. Here, the repeated random

splits were carried out for the model selection data, assigning 70% of
spindle and non-spindle epochs to the training set, and the remaining
30% to the testing set. Using the model coefficients ak,i and error ρk
obtained from each epoch k of the training data, we used the human
expert-scored labels lk (i.e. 0 for non-spindle and 1 for spindle) to obtain
a vector of weightsW for the features by finding a least-squares solution
to:

=

a a a
a a a

a a a

W

l
l

l

1
1

1

.

k k k k k

1,1 1,2 1,3 1

2,1 2,2 2,3 2

,1 ,2 ,3

1

2

(4)

The additional constant term avoids constraining the separating
hyperplane to pass through the origin in feature space. The weights W
can be applied to the features computed from the testing data which
provides a one-dimensional distance D from an optimal hyperplane of
separation between spindle and non-spindle feature sets. We can eval-
uate how well this distance corresponds to the human expert-scored
labels of the testing data by computing the area under the receiver

Fig. 3. Spindle detection. The lowest row in the plot shows the data with the spindles in red, as marked by a human expert. In the middle row, a DDA spindle
detection output (trained on one channel from a different subject) is shown. We also show the spectrograms (in the top row) for reference. The gray-shaded regions
indicate the width of the time windows used for computing both the DDA features and the spectrogram (650ms). Since we plot the time points on the x-axis for the
start points of the sliding windows, all points within a shaded region use windows that include some amount of spindle data.

Table 2
DDA spindle detection performance on all recordings.

Subject Channel A′ F1 False discovery
rate

False negative
rate

L1 11 0.6023 0.2685 0.5323 0.8117
L2 11 0.6934 0.2991 0.7107 0.6903
L3 11 0.7423 0.2892 0.4701 0.8011
L4 11 0.7784 0.4948 0.5590 0.4365
L5 11 0.7529 0.3679 0.6682 0.5872
Laminar mean 0.7139 0.3439 0.5881 0.6654
S1 1 (RCIN3) 0.8785 0.5404 0.5924 0.1983
S1 2 (LCIN4) 0.9066 0.7685 0.2340 0.2290
S1 3 (LSF6) 0.8716 0.4345 0.6953 0.2428
S2 1 (LCIN3) 0.9120 0.3464 0.0380 0.7887
S2 2 (LSF3) 0.9170 0.5410 0.0265 0.6254
S2 3 (RCIN5) 0.8514 0.5601 0.1723 0.5768
S2 4 (LFR1) 0.9262 0.3970 0.0386 0.7499
S3 1 (OF7) 0.9062 0.8211 0.1718 0.1858
S4a 1 (RPF5) 0.4886 0.0749 0.8372 0.9514
S4 2 (ROF4) 0.8421 0.7201 0.1541 0.3731
S5 1 (RAF6) 0.8186 0.6290 0.3222 0.4133
sEEG mean 0.8830 0.5758 0.2445 0.4383
E1 1 (GR28) 0.8385 0.6081 0.3954 0.3884
E1a 2 (GR53) 0.6254 0.0462 0.9722 0.8636
E1 3 (GR38) 0.7726 0.5128 0.4000 0.5522
E2 1 (AGR52) 0.8112 0.3478 0.7692 0.2941
ECoG mean 0.8074 0.4896 0.5215 0.4116

a These recordings are excluded from the means and further analysis due to
poor quality.

A.L. Sampson et al. Journal of Neuroscience Methods 316 (2019) 12–21

15



operating characteristic (ROC) curve or F1 score. The ROC is con-
structed by plotting the hit rate against the false alarm rate for various
spindle detection thresholds for D. The area under the curve defined by
the plotted points, A′, should be equal to 0.5 for random chance de-
tection, and 1 for perfect separation of the groups (Hand and Till,
2001). A′ can be obtained by taking

= +A S n n
n n

( 1)
2

0 0 0

0 1 (5)

where n0 and n1 represent the number of points in each of two classes
labeled 0 and 1 (here, non-spindle and spindle epochs), and S0 is ob-
tained by first ranking all points by their probability of being classified
as 0, then summing the ranks of the true class 0 points. In practice, once
a specific model form has been selected, it is often sufficient to use a
single feature for classification.

While A′ is useful for structure selection of the DDA model, we
evaluate final performance with another measure, the F1 score, which is
more widely used for evaluating spindle detection (Dice, 1945;
Sørensen, 1948). F1 scores are computed from the confusion matrix
according to:

=
+ +

F 2T P
F N F P 2T P1 (6)

where T P is the number of true positives, F N is the number of false
negatives, and F P is the number of false positives. For this purpose, the
human scoring is considered the “ground truth”. F1 scores are used in
Section 3.1 for comparison between the outputs of several spindle de-
tection methods. As additional measures, we also compute the false
discovery rate ( = +RF D F P

T P F P ) and false negative rate
( = +RF N F N

F N T P ).
The cross-validation was repeated 100 times and the maximal A′

was used to select the optimal model form and values of the delays.
Using this procedure, for spindle detection in the laminar, sEEG, and
ECoG data at all sampling rates, an effective DDE model is:

= + +x a x a x a x1 2 3
2

1 2 1 (7)

with τ1= 16 δt=32ms and τ2= 25 δt=50ms for 500 Hz data. For
spindle detection, we find that the single feature a2 provides sufficient
information for good detection performance. In general, the threshold
for spindle detection is set to 1.2 standard deviations above the mean of
a2. This threshold has been empirically determined to provide good
agreement with human scoring and was fixed throughout.

Despite the fact that these data come from subjects with different
types of electrodes and different sampling rates, it is possible to obtain
spindle detection which agrees with human scoring across multiple
recordings as well as multiple human scorers would tend to agree with
each other (Basner et al., 2008). Because we use nonlinear models, all
terms are connected and linear as well as nonlinear terms contain both
linear and nonlinear information. For this reason the delays do not
correspond to particular frequencies as one might expect (Lainscsek and
Sejnowski, 2015). Adjustments need to be made for data with different
sampling rates. In order to apply a selected DDA model to data with a
higher sampling rate, we need to change the delays and derivatives in
the following way: The delays can be just the approximate multiples

(e.g. from 500 Hz to 1000 or 1024Hz they would be doubled). For the
derivatives we keep the number of total points constant but take for this
example every second data point. For data with lower sampling rates
(e.g. the DREAMS data in Section 3.1), results can only be obtained by
upsampling the data to the minimum sampling frequency of 500 Hz
before applying the model.

2.4. Application to full-time data

Having selected a model form and delay pair according to the above
procedures, we compute the corresponding a2 coefficient in sliding time
windows across the full length of all recordings. We use windows of
length around 650ms, shifted by around 200ms per step. Since the
number of spindle and non-spindle epochs in the training data are not
equal, the optimal threshold for spindle detection may vary slightly
between recordings. Nevertheless, for the sake of testing a fully auto-
mated method, we maintained the aforementioned 1.2 standard de-
viation above mean a2 threshold for all results shown here. The be-
ginning of each detected spindle is therefore defined as the point at
which the normalized a2 value increases this threshold, and the end is
defined as the point at which it subsequently decreases below the
threshold. (Note that threshold-setting does not affect A′, since this is a
threshold-independent measure, but does determine the F1 scores,
which are computed from the confusion matrix for a particular
threshold.) As a final step, any threshold crossings less than 300ms in
length are excluded and marked as non-spindle. The remaining
threshold-crossings are the identified spindles. We evaluate detector
performance by comparing these time points identified as spindle by
the detector with those identified by the human expert.

3. Results

Applying the detector to laminar, sEEG, and ECoG data, we obtain a
mean area under the ROC curve, A′, of 0.82 and a mean F1 score of 0.50.
For the laminar data, we take just one central channel from each electrode
array for evaluating all methods. Since these data were scored based on
all channels, but some superior and inferior channels lacked clearly
visible spindles, one of the channels (channel 11) with apparent spindles
was chosen for evaluating spindle detection performance. All available
(individually scored) sEEG and ECoG channels were used. For compar-
ison, DDA frequency-band detectors (discussed in Appendix A) for
11–14Hz and 11–17Hz yield mean A′ values of 0.72 and 0.77 and mean
F1 scores of 0.21 and 0.18 respectively. Such a difference in performance
indicates that in addition to the frequency characteristics of spindles,
nonlinear information might also be relevant. Fig. 3 shows the output the
data-trained DDA spindle detector. Since the data-trained DDA detector
shows higher agreement with human scoring than the frequency-based
DDA detector, it is used exclusively for the remainder of the manuscript.

The A′ values, F1 scores, false discovery rates, and false negative
rates for the DDA spindle detector on all subjects are listed in Table 2.
Note that in Section 3.1, F1 scores are used to compare methods. Where
cross-recording averages are reported, two recordings are excluded
since all automated detectors perform poorly, and these were originally
selected as recordings that were difficult to score.

Table 3
Comparison of detection methods for all data.

Method Mean percentage of human-scored spindles Mean length (s) Mean F1 False discovery rate False negative rate CPUa time (s) per recording

Mölle 105.0457 0.4871 0.4871 0.2856 0.5994 30.5645
Martin 141.9600 0.4754 0.4754 0.3427 0.5441 2.5615
Andrillon 46.3362 0.4028 0.4028 0.2078 0.7022 0.3922
Hagler 116.2967 0.4591 0.4591 0.2963 0.6225 1.8177
DDA 89.8979 0.4970 0.4970 0.3861 0.4969 1.6389

a All methods were implemented in MATLAB 9.4 (R2018a) and tested on the same 12-core (Intel Xeon X5690 @ 3.47 GHz) system. The DDA detector calls an
executable written in C for a key step in the procedure.
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3.1. Comparison with established methods

Warby et al. (2014) presented a comparison of several automated
methods for spindle detection with scoring by human experts and non-
experts. Here, we compare the DDA spindle detector to two of the au-
tomated methods considered there (Mölle et al., 2002; Martin et al.,
2013) and a modified version (Andrillon et al., 2011) of a third
(Ferrarelli et al., 2007), as well as an additional method designed for
intracranial data (Hagler et al., 2018). Warby et al. used two additional
detectors (Bódizs et al., 2009; Wendt et al., 2012) which are excluded
here due to their reliance on the comparison of specific channels from a
standard EEG montage, making them unsuitable for use with in-
tracranial recordings from disparate locations.

It is important to note that for all of these methods, spindle detec-
tion performance may be lower here than with some other data, since
no preprocessing or artifact removal steps have been applied here prior
to the core processing steps for spindle detection intrinsic to each

method. Further, these data present a mix of recordings of different
quality and spindle clarity, as evaluated by human expert scoring.

Mölle et al. used a 12-15 Hz bandpass finite impulse response (FIR)
filter and subsequently computed a root mean square (RMS) signal with
50ms time resolution and a 100ms time window from the filtered data.
Spindles were then detected using a thresholding procedure, with be-
ginning and end threshold crossings between 0.4 and 1.3 s required for
spindle detection. This threshold was set automatically by the algo-
rithm for each subject as originally published, but was always greater
than 5 μV (Mölle et al., 2002).

The approach of Martin et al. was similar: data were first bandpass
filtered from 11 to 15 Hz using an FIR filter applied both forward and
reverse. The RMS of the signal was then computed using 0.25 s win-
dows. The threshold for spindle detection was set at the 95th percentile
and required two consecutive RMS time points (corresponding to 0.5 s)
for a spindle (Martin et al., 2013).

We also use a slightly modified version of the detector of Andrillon

Fig. 4. Detection methods comparison. In the left panel, F1 score is plotted for a set of automated spindle detection methods and DDA for the various laminar, sEEG,
and ECoG recordings. The means (points) and standard deviations (bars) across all recordings for each detector are plotted at the far right – these exclude two
recordings (denoted by *) of poor quality for which all methods yield low performance. These recordings are also omitted from the right panel. At right, the F1 score
for all recordings is plotted against CPU time for each detection method. Each detector was run on 20 intracranial recordings, the mean across all recordings (except
the two noted exclusions) is plotted with a larger marker, standard deviations across all recordings are plotted as bars in both CPU time and F1 score. Note that not all
recordings are of equal length, so some variation in the CPU time is to be expected.

Fig. 5. Combining features from the various methods. Spindle detection measures from the various tested methods were combined by taking a mean at each time
point, and the agreement of these averaged measures with human scoring was evaluated via F1 score. Two recordings with poor detector performance for all methods
were omitted here. Colors correspond to the different methods, when methods are combined, concentric circles corresponding to the combined measures are plotted
at one point. For all methods and combinations of methods, the mean across all recordings is shown. Error bars represent the standard deviation across recordings.
Mean F1 scores for these combinations of detectors are also shown in Table 4. It is noteworthy that there is a significant boost in detection performance only when
combining DDA with any one of the spectral methods. No other combination of methods provides such a boost.
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et al., itself a modified version of the method of Ferrarelli et al. (2007).
Putative spindles were identified by applying a zero-phase fourth-order
Butterworth bandpass filter for 9–16 Hz. Instantaneous amplitude was
computed using a Hilbert transform, and the threshold for detection
was set at three standard deviations from the mean, with a threshold for
the beginning and end of spindles set at one standard deviation. Only
events with durations between 0.5 and 2 s were marked as spindles, and
spindles separated by less than 1 s were merged.

Finally, we also apply a method developed for and previously ap-
plied to intracranial recordings of the type we consider here, which was
developed by Hagler et al. This technique relies on an initial detection
based on instantaneous power in the spindle band (11–17 Hz) using a
smoothed wavelet convolution. Any initially identified spindles under
0.5 s in duration are excluded. Further, the ratio of Fourier power in the
spindle band relative to power in the 4–9 Hz range is used to remove
artifacts and weak spindles. (Hagler et al., 2016).

In order to compare these various techniques with differing meth-
odologies, we convert the raw outputs of each technique to a binary index
of spindle or non-spindle for each time point. These binary detection in-
dices are then compared by computing the F1 score of each method
against the human expert-marked spindles. The mean across subjects of
the number of spindles detected (expressed as a percentage of the number
of spindles marked by the human expert), spindle length, F1 score, and
false positive and negative rates (relative to human expert scoring) for
each of these methods are shown in Table 3. The F1 scores as well as CPU
time for all methods and recordings are shown in Fig. 4. DDA provides the
highest average F1 score and the second lowest average CPU time.

Notably, as shown in Fig. 2, one of the recordings (L1) had a higher
mean peak spindle frequency than all others. That recording has a low
F1 score (see Fig. 4) for all comparison methods. DDA, in contrast,
detected those spindles relatively well since the goal was to detect
dynamical patterns in the data.

To assess the advantage provided by using DDA features in addition
to spectral features, Fig. 5 and Table 4 show the mean F1 scores for
various combinations of the different detection methods. Of note is the
fact that combining the DDA measure of spindle activity with other
measures generally provides a better measure than combining two or
more spectral methods, since it provides different information. Note
that the F1 scores for the DDA detector alone in Fig. 5 and Table 4 do
not match exactly the scores in the earlier figures and tables. This is due
to an additional step of averaging the DDA features across the over-
lapping windows at each time point. This provides a measure with time
resolution equal to original data which can then be combined with
other measures on a point-by-point basis.

Finally, for comparison, DDA and the other detection methods were
applied to the DREAMS dataset, collected and made available by

Table 4
Combining detection measures from the various methods. The highest-per-
forming combinations of detectors are marked in bold.

# combined Mölle et al. Martin
et al.

Hagler
et al.

Andrillon
et al.

DDA F1 score

1 0.4871 0.4754 0.4591 0.4028 0.5179
X X 0.4912
X X 0.4709
X X 0.4264
X X 0.5892

2 X X 0.4761
X X 0.4439
X X 0.5704

X X 0.3991
X X 0.5781

X X 0.5280
X X X 0.4813
X X X 0.4701
X X X 0.5119
X X X 0.4674

3 X X X 0.5098
X X X 0.4978

X X X 0.4571
X X X 0.5197
X X X 0.4943

X X X 0.4979
X X X X 0.4653
X X X X 0.5125

4 X X X X 0.5000
X X X X 0.4917

X X X X 0.4954
5 X X X X X 0.4927

Fig. 6. Spindle detection on DREAMS data. F1 score is plotted for a set of automated spindle detection methods and DDA for the eight surface EEG excerpts included
in the DREAMS data set. For six of the eight excerpts, two human experts scored the data. For these six recordings, F1 scores based on the first expert's markings are
plotted as diamonds at left, and the scores based on the second expert's markings are plotted as open circles at right. The means (diamonds and open circles) and
standard deviations (bars) across all recordings for each detector's agreement with both experts are plotted at the far right with the same markers, and the means of
each method's agreement with both scorers are plotted as larger filled circles. Combinations of the other measures with DDA, as shown in Fig. 5 are shown with the
colors for each of the methods combined. In addition to the six methods shown previously, we also show here the F1 scores of the automated spindle detections
included with the DREAMS data with both human experts in red.
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Université de Mons, TCTS Laboratory (Stéphanie Devuyst, Thierry Dutoit)
and Université Libre de Bruxelles, CHU de Charleroi Sleep Laboratory
(Myriam Kerkhofs) (Devuyst et al., 2011). The DREAMS data consist of
surface EEG with spindles marked by two human experts. Using these
data allow the above detection methods to be compared on surface EEG
data, as well as compared to automated spindle detections from a method
implemented by the original authors and made available with the data.
This technique is based on bandpass filtering and applying a recording-
specific threshold. While the DREAMS automated detections provide
better agreement with the human scorers than the intracranial data-
trained DDA detector or any of the other tested methods (Devuyst et al.,
2011). We cannot compare directly with this method since only the data
and automated detections are available, and not the code. We therefore
cannot test the DREAMS method on our dataset. Further, as can been seen
in Fig. 6, there is also a large discrepancy between the two human scorers,
with one scorer also only having scored six of the eight subjects. Issues
with the scoring of these data were previously noted by O’Reilly and
Nielsen (2015). Further, it is noteworthy that DDA still provides reason-
able spindle detection after structure selection based solely on intracranial
data. Most significantly, however, we also show the combinations of two
detectors (as shown in Fig. 5). For these data, combining our DDA mea-
sure with the measure produced by the method of Martin et al. provides
the highest average agreement with the two human scorers among all
tested methods and combinations of methods.

4. Discussion and conclusions

DDA is a powerful novel tool for detecting sleep spindles in EEG and
intracranial recordings. DDA requires minimal pre-processing of signals
and can be rapidly applied to large datasets. When compared with
several well-established and reliable frequency-based methods, DDA
provides the highest level of agreement with human scoring (evaluated
here with F1 score). Further, DDA is the second fastest of the tested
methods, where the only faster method produces the lowest F1 scores.
DDA therefore holds great promise for real-time applications. We also
tested all methods on the publicly available DREAMS data, consisting of
surface EEG recordings scored by two expert scorers. Again, DDA pro-
vides the highest F1 score of the previously tested methods when taking
the average across both scorers. The automated detections made
available with the DREAMS data however, do provide better agreement
with the human scorers. It should be noted that the DREAMS data is a
small and heterogeneous data set, and therefore somewhat limited for

evaluation purposes (O’Reilly and Nielsen, 2015).
An important caveat for the results from intracranial data presented

here is that they are based on comparison with the spindle markings by a
single human expert. Despite this, the fact that several automated
methods produce similar detections indicates that the markings are rea-
sonable. Further, similar results are achieved using the same approaches
on an EEG data set scored by two experts. It is also important to note the
classic bias that our implementation of other previously published de-
tectors may not be as fully perfected as the novel method developed for
this paper. Other implementations on other data and comparing to other
human scoring might not produce the same relative performance num-
bers. However, this is only a concern when looking at each method se-
parately. As shown in Figs. 5 and 6, combining our nonlinear time-do-
main method with any of the tested spectral-based methods, the
performance is increased dramatically, beyond the relatively differences
between individual methods. This indicates that spectral and nonlinear
methods account for different information in the original signal: DDA
looks for dynamical differences while spectral methods look for content in
a specific spindle frequency band.

Combining two spectral measures does not provide the same ad-
vantage as combining linear and nonlinear features. Additionally, we
have demonstrated that DDA models built on the data show superior
performance to those built to detect specific frequencies, which in-
dicates that using the nonlinear signature of the spindle provides access
to additional information. Accessing this type of information could
prove especially useful in future studies focused on spindles of different
types, or occurring in patients with neuropsychiatric disorders. Finally,
it is worth emphasizing again the robustness of DDA measures in gen-
eral to noise and artifacts due to the sparsity of the feature space. This is
a significant advantage for many data sets.

A version of the DDA spindle detector for use on Linux systems using
MATLAB has been made available at http://snl.salk.edu/∼asampson/
SPINDLES/index.html.
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Appendix A. Frequency-based spindle detection

All spindle detection techniques DDA is compared to are based on decomposing the signal into oscillatory components, and therefore have very
different assumptions: while DDA assumes nonlinearity of the (unknown) underlying dynamical system, spectral methods assume linear super-
position of stationary sinusoids. To interpret the differences in detector performance we need to answer the question of what is gained by using
nonlinear instead of linear analysis.

In Lainscsek and Sejnowski (2015) a connection between DDA and spectral analysis was made: a one term linear DDE can be used for frequency
detection while a one term nonlinear DDE can detect frequency/phase couplings in the time domain. A DDE with linear and nonlinear terms will have
vanishing nonlinear coefficients for purely harmonic signals. For data that contain nonlinear couplings between frequencies or other nonlinear signal
components, linear as well as nonlinear terms contain both linear and nonlinear information. Superposition does not work due to nonlinearities in the
model. Therefore no connection between frequencies and delays can be made for real-world signals that are generally nonlinear.

Applying the same three-term, nonlinear DDE used for the spindle data to simulated data (noise-diluted sinusoids) can serve as a test of what can
be gained by adding nonlinear information, and as a bridge between this technique and traditional wavelet or other spectral methods. The effec-
tiveness of the frequency detector at detecting spindles is also informative as to how much of the relevant dynamical information is related to the
dominant frequencies, which is of interest since many spindle detection techniques rely on spectral analysis (Warby et al., 2014).

The DDA frequency detector relies on the same structure selection framework as the data-trained spindle detector, but the DDE model form is
fixed to match the model selected using the real data, and only the values of the delays are selected based on the simulated data. For the purposes of
comparison with the data-trained detector, we select for frequency bands in the simulated data that correspond to sleep spindles in the EEG sigma
band, defined alternately as 11–14 Hz or 11–17 Hz. By comparing the delays which are most successful at detecting these frequencies with those that
are selected for the task of sleep spindle detection, we can gain insight into the information added by nonlinear analysis.

The simulated data is generated according to:

= + +S A tcos( )i i i i (8)
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with ωi=2πfi for 9991 equally-spaced frequencies fi between 0.1 and 100 Hz, equal amplitudes Ai=1, random phases 0 < φi≤2π, and added
white noise ϵ with a signal-to-noise ratio of 5 dB. Starting from the full set of frequencies, we divide into nearly-equal groups for training and testing,
with training data consisting of frequencies fi from 0.1 to 100 Hz, and the testing data consisting of frequencies fi from 0.11 to 99.99 Hz, both sets
with 0.02 Hz frequency intervals. This ensures that we validate on slightly different frequencies from the training data, still in the desired range. For
our simulated training data, we select data with frequencies fi in the sigma band. As was the case for the data-driven detector, we train separately for
each sampling rate, generating simulated data to match each of the sampling rates in the laminar, sEEG, and ECoG data. We then choose delays for
each sampling rate fs.

Selecting a model to provide sensitivity to specific frequency bands requires an additional step, in that we first select “high-pass delays” which are
sensitive to frequencies above the lower bound we wish to set (here, 11 Hz), and then additional “low-pass delays” which are sensitive to frequencies
below the upper bound (here, 14 or 17 Hz).

The delays chosen for each sampling rate for each definition of the sigma band (11–14Hz or 11–17 Hz) are shown in Table 5. Note that in some
cases, the same delays can be used in both the “high-pass DDE” and “low-pass DDE”, since different weights can be applied to the features to select
for different frequency ranges.

As with the data-driven detector, we apply a vector of weights to the features for both the lower and upper bounds, in this case obtaining two
values of D, which we call D1 and D2. We combine them by summing their absolute values and applying the sign of the lesser of d1 and d2:

= +D D D
D D

D Dmin( , )
|min( , )|

(| | | |).1 2

1 2
1 2 (9)

We will therefore obtain positive values only in the region where both are positive, which should correspond to the “DDA pass band”.
Fig. 7 shows the frequency response of the detector on simulated data. Given its strong selectivity for frequencies in the desired range, it was

Fig. 7. Frequency band detection.
Applying the DDE model with two dif-
ferent delay pairs, one sensitive to fre-
quencies above 11Hz and one sensitive
to frequencies below 17Hz, we can
obtain an output which is positive only
in the desired band. In the top panel,
the distance from the hyperplane values
computed from both DDEs (d1 and d2)
are plotted for test frequencies ranging
from 0.1 to 100Hz. The frequency of
the test data is color-coded according to
the color bar at left, from 0.1 (red) to
100Hz (blue). Points falling into the
upper right quadrant (shaded yellow)
have positive values for both d1 and d2,
and we select delays such that only
frequencies in the desired range
(11–17Hz) fall into this area. In the
lower plot, d1 and d2 are combined ac-
cording to Eq. (9) to obtain a one-di-
mensional index that is positive only for
frequencies in the desired range. This
procedure was also used to obtain de-
lays and corresponding weights for fre-
quency ranges 11–14Hz and 12–15Hz.

Table 5
Selected delays (τ1, τ2) for specified bands, units of δt=1/fs.

fs delays [δt]

11–14Hz 11–17Hz

>11Hz <14Hz >11Hz <17Hz
2000 (8,105) (8,105) (8,69) (7,39)
1024 (1,44) (19,4) (4,37) (4,20)
512 (23,43) (8,2) (17,19) (10,2)
500 (39,18) (10,2) (2,17) (2,9)
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applied to the sleep spindle data as a means of detecting frequency content in the spindle band which uses the same methodology as the data-based
DDA spindle detector. This allows for direct comparison between the frequency-based and data-based DDA approaches.
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