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12.1 Introduction: the timing game 

CorrelatedJiring is a common expression used in Neuroscience. It refers to two or 
more neurons that tend to be activated at the same time. It is used so frequently in part 
because there are so many timescales at which one may analyze neural activity. In a 
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sense, correlation might appear as a trivial phenomenon. For instance, if one looks at 
day-long activity, practically the whole cerebral cortex fires in a correlated manner, 
because of the sleep-wake cycle. Similarly, whenever an object appears within the 
visual field, many neurons in visual cortex are expected to respond throughout the 
same time interval. Clearly, such correlations are to be expected. However, as the 
observation time window becomes smaller, explaining the presence of correlations 
becomes more difficult and, at the same time, potentially much more useful. Sup- 
pose the activity of two visual neurons is monitored during presentation of a visual 
stimulus, after its onset. Suppose also that within a short time window of, say, a 
few hundred milliseconds, spikes from the two neurons tend to appear at the same 
time. Why is this? Neither the sensory information nor the state of the subject are 
changing in an appreciable way, so the correlation must reflect something about the 
internal dynamics of the local circuitry or its connectivity. This is where correlations 
become interesting. 

Thus, correlations at relatively short timescales become useful probes for under- 
standing what neural circuits do, and how they do it. This is what this chapter is 
about. This analysis goes down to the one millisecond limit (or even further), where 
correlation changes name and becomes synchrony. Even at this point, the signifi- 
cance of correlated activity cannot be taken for granted. Some amount of synchrony 
is practically always to be expected simply because cortical neurons are highly inter- 
connected [14,91]. The question is not just whether there is any correlated activity 
at all, but whether timing is an issue and correlations make any difference. In other 
words, given the function of a particular microcircuit or cortical area, if the system 
were able to control the level and timescale of correlated activity, what would the 
optimal values be? For example, in a primary sensory area, stimulus representation 
is of paramount importance, so maybe measuring an excess of coincident spikes in 
this case is not an accident, but a consequence of the algorithm that local circuits use 
to encode stimulus features. This is just an example; the broader question is whether 
neurons exploit the precise coincidence of spikes for specific functions. There are 
several theoretical proposals that revolve around this concept; we discuss some of 
them below. 

Asking about the functional implications of correlated activity is one way to at- 
tack the problem; this is a top-down approach. Another alternative is to take a 
bottom-up view and investigate the biophysical processes related to correlated fir- 
ing. These come in two flavors, mechanisms by which correlations are generated, 
and mechanisms by which a postsynaptic neuron is sensitive to correlated input. In 
this case valuable information can be obtained about possible correlation patterns 
and timescales, and in general about the dyna&cs of correlated activity. 

This approach is also important because it sheds some light on a fundamental 
question: how does a single cortical neuron respond under realistic stimulation con- 
ditions? The reason this is a problem is the interaction between spike-generating 
mechanisms, which are inherently nonlinear, and the input that drives the neuron, 
which typically has a complicated temporal structure. The major obstacle is not the 
accuracy of the single-neuron description; in fact, classic conductance-based models 
[24] like the Hodgkin-Huxley model [48] are, if anything, too detailed. The larger 
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problem is the complexity of the total driving input, which is mediated by thousands 
of synaptic contacts (14, 911. What attributes of this input will the postsynaptic re- 
sponse be most sensitive to? Correlations between synaptic inputs are crucial here 
because they shape the total input and hence the postsynaptic response. Determining 
what exactly is their role is a key requisite for understanding how neurons interact 
dynamically and how the timing of their responses could be used for computational 
purposes. 

This chapter reviews work related to both perspectives on correlated activity: the 
high-level approach at which function serves to guide the analysis, and the low-level 
approach that is bound to the biophysics of single neurons. Eventually (and ideally), 
the two should merge, but currently the gap between them is large. Nevertheless, 
comparing results side by side provides an interesting panorama that may suggest 
further clues as to how neurons and neural circuits perform their functions. 

12.2 Functional roles for spike timing 
There is little doubt that the correct timing of action potentials is critical for many 
functions in the central nervous system. The detection of inter-aural time differences 
in owls and the electrosensory capabilities of electric fish are two well-known exam- 
ples [21]. In these cases it is not surprising that timing is important; it is ingrained 
in the nature of the sensory signals being detected. The issue of t i dng  also arises 
naturally in the rodent somatosensory system [7]. To explore their surroundings, rats 
move their whiskers periodically. To locate an object, whisker deflections need to be 
interpreted relative to whisker position, which can be determined from the phase of 
the motor signal. Thus, the latencies of stimulus-evoked responses relative to such 
internal signal can be used to encode spatial information. This mechanism by which 
sensory-triggered activity is interpreted relative to an internal, reference signal may 
be applicable to other circuits and in a more general way [6,57]. 

12.2.1 Stimulus representation 

Spike timing, however, has been discussed in an even wider sense than implied by the 
above examples. No doubt, this is partly because oscillations at various frequencies 
and synchronous activity are so widespread [S-861. One proposal that has received 
considerable attention is that the coordinated timing of action potentials may be ex- 
ploited for stimulus representation [7 1-44]. Specifically, neurons that have different 
selectivities but fire synchronously may refer to the same object or concept, binding 
its features. The following experiment [5 11 illustrates this point. The receptive fields 
of two visual neurons were stimulated in two ways, by presenting a single object, and 
by presenting two objects. Care was taken so that in the two conditions practically 
the same firing rates were evoked. The synchrony between pairs of neurons varied 
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across conditions, even when the firing rates did not. Thus, correlations seemed to 
code whether one or two stimuli were shown [5 I]. 

In general, changes in firing rate pose a problem when interpreting variations in 
synchrony or correlations, first, because the latter can be caused by the former, and 
second, because the impact of a change in correlation upon downstream neurons 
becomes uncertain given a simultaneous change in firing rate. When neural activity 
is compared in two conditions involving different stimuli, it is likely that the evoked 
firing rates from the recorded neurons will change; even the populations that respond 
within a given area may be different. This is one of the main factors that muddles 
the interpretation of experiments in which correlations have been measured [72]. 
The most solid paradigms for investigating correlated activity are those in which 
variations in correlation are observed without variations in stimulation and without 
parallel changes in firing rate, but fulfilling all of these conditions requires clever 
experimental design and analysis. 

There are many other studies in which correlations have been interpreted as ad- 
ditional coding dimensions for building internal representations. The following are 
cases in which the confounding factors just mentioned were minimized. Consider 
two neurons with overlapping receptive fields, and hence a considerable degree of 
synchrony. Analysis of the activity of such visual neurons in the lateral genicu- 
late nucleus has shown [23] that significantly more information about the stimulus 
(around 20% more) can be extracted from their spike trains if the synchronous sbikes 
are analyzed separately from the nonsynchronous ones. In a similar vein, recordings 
from primary auditory cortex indicate that, when a stimulus is turned on, neurons 
respond by changing their firing rates and their correlations 11261. In many cases the 
firing rate modulations are transient, so they may disappear if the sound is sustained. 
However, the evoked changes in correlation may persist [26]. Thus, the correlation 
structure can signal the presence of a stimulus in the absence of changes in firing 
rate. 

Finally, the antennal lobe of insects is an interesting preparation in which this 
problem can be investigated. Spikes in this structure are typically synchronized by 
20 Hz oscillations [90]. When these neurons are artificially desynchronized [55], the 
specificity of downstream responses is strongly degraded, selectivity for differeht 
odors decreases, and responses to new odors arise, even though this loss of informa- 
tion does not occur upstream. Apparently, what happens is that the downstream cells 
- Kenyon cells in the mushroom bodies - act as coincidence detectors that detect 
synchronized spikes from projection neurons in the antennal lobe. Kenyon cells have 
very low firing rates and are highly selective for odors, so in effect they sparsify the 
output of the antennal lobe [62]. In addition, disrupting synchrony in this system has 
a real impact on behavior: it impairs odor discrimination 1793. This preparation is 
also convenient for studying the biophysical mechanisms underlying such oscillatory 
processes [9,10]. 

These examples show that the neural codes used to represent the physical world 
can be made more efficient by taking into account the pairwise interactions between 
neural responses. The degree to which this is actually a general strategy used by neu- 
rons is uncertain; the key observation is that, under this point of view, correlatioas 
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are stimulus-dependent, just like sensory-evoked firing rates. The studies discussed 
below suggest a different alternative in which correlations change rapidly as func- 
tions of internal events and may regulate the flow of neural information, rather than 
its meaning 1681. 

12.2.2 Information flow 

The regulation of information flow is illustrated by the following result [70]. When 
intracortical microstimulation is applied during performance of a visiual-motion dis- 
crimination task, the subject's response is artificially biased, but the bias depends 
strongly on the time at which the microinjected current is delivered relative to stim- 
ulus onset. Microstimulation has a robust effect if applied during presentation of the 
visual stimulus, but it has no effect if applied slightly earlier or slightly later than 
the natural stimulus [70]. This suggests that even a simple task is executed accord- 
ing to an internal schedule, such that the information provided by sensory neurons 
is effectively transmitted only during a certain time window. ' How does this inter- 
nal schedule work? One possibility is that changes in correlations are involved [68]. 
This is suggested by a number of recent experiments in which correlations were seen 
to vary independently of stimulation conditions. To work around the usual prob- 
lems with stimulus-linked correlations, investigators have studied correlated activity 
in paradigms where, across trials, stimulation conditions remain essentially constant 
and the most significant changes occur in the internal state of a subject. 

Riehle and colleagues trained monkeys to perform a simple delayed-response task 
where two cues were presented sequentially [66]. The first cue indicated a target 
position and instructed the animal to get ready, while the second cue gave the go 
signal for the requested hand movement. Crucially, the go signal could appear 600, 
900, 1200 or 1500 ms after the first cue, and this varied randomly from trial to 
trial. Neurons recorded in primary motor cortex increased their synchrony around 
the time of the actual sensory stimulus or around the time when the animal expected 
the go signal but it did not appear 1661. The latter case is the most striking, because 
there the firing rates did not change and neither did the stimulus; the synchronization 
depended exclusively on the internal state of the monkey. 

Fries and colleagues 1351 used attention rather than expectation to investigate the 
synchrony of visual neurons in area V4. They used conditions under which firing 
rates varied minimally, taking advantage of the finding that, although attention may 
have a strong effect on the firing rates evoked by visual stimuli, this modulation 
is minimized at high contrast [65]. Monkeys were trained to fixate on a central 
spot and to attend to either of two stimuli presented simultaneously and at the same 
eccentricity. One of the stimuli fell inside the receptive field of a neuron whose 
activity was recorded. Thus the responses to the same stimulus could be compared 
in two conditions, with attention inside or outside the neuron's receptive field. At the 
same time, the local field potential (LFP) was recorded from a nearby electrode. The 
LFP measures the electric field caused by transmembrane currents flowing near the 
electrode, so it gives an indication of local average activity [38]. The correlation that 
was studied in these experiments [35] was that between the LFP and the recorded 
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neuron's spikes. The key quantity here is the spike-triggered average of the LFP, or 
STA. The STA is obtained by adding, for each spike recorded, a segment of the LFP 
centered on the time of the spike; the final sum is then divided by the total number 
of spikes. The result is the average LFP waveform that is observed around the time 
of a spike. STAs were computed for attention outside and inside the receptive field. 
They were similar, but not identical: rapid fluctuations were more pronounced when 
attention was directed inside the receptive field; in the Fourier decomposition, power 
in the low frequency band (0-17 Hz) decreased while power in the high frequency 
band (30-70 Hz) increased. Because the STA reflects the correlation between one 
neuron and the neighboring population, the interpretation is that, as attention shifts 
to the receptive fields of a cluster of neurons, these become more synchronized at 
high frequencies and less so at low frequencies. Although h e  changes in synchrony 
were modest - on average, low-frequency synchronization decreased by 23% and 
high-frequency synchronization increased by 19% - changes in firing rate were also 
small; these were enhanced by a median of 16% with attention inside the receptive 
field. Under these conditions the changes in synchrony could be significant in terms 
of their impact on the responses of downstream neurons. 

The study just discussed [35] suggests that synchrony specifically in the gamma 
band (roughly 30-80 Hz) may enhance the processing of information in some way. 
But what exactly is the impact of such synchronization? Another recent study [34] 
suggests at least one measurable consequence: the latencies of synchronized neu- 
rons responding to a stimulus may shift in unison. In this case the paradigm was 
very simple: oriented bars of light were flashed and the responses of two or more 
neurons in primary visual cortex (Vl) were recorded, along with LFPs. Neurons 
were activated by the stimuli, and the key quantity examined was the time that it 
took the neurons to respond - the latency - which was calculated on each trial. 
Latencies covaried fairly strongly from trial to trial (mean correlation coefficient of 
0.34, with a range from 0.18 to 0.55), so pairs of neurons tended to fire early or late 
together. This tendency depended on the amount of gamma power in the LFPs right 
before the stimulus. When the LFPs from two electrodes both had a strong gamma 
component, the latency covariation between the two recorded neurons from the same 
pair of electrodes was high. Note that the spectral composition of the LFFs was only 
weakly related to changes in firing rate, so short latencies were probably not due 
to changes in excitability. This means that, if neurons get synchronized around 40 
Hz right before a stimulus is presented, they will respond at about the same time 
[34]. In other words, while the mean firing rates are mostly insensitive to shifts in 
oscillation frequencies, the time spread in the evoked spikes from multiple neurons is 
much smaller when the gamma oscillations are enhanced. This could certainly have 
an impact on a downstream population driven by these neurons [18-67]. Thus, the 
modulation of latency covariations [34] is a concrete example of how the synchrony 
of a local circuit may be used to control the strength of a neural signal. 

Finally, we want to mention two other studies [36, 371 that also investigated the 
synchronization of V1 neurons, this time using an interocular rivalry paradigm. In 
rivalry experiments, different images are shown to the two eyes but only one im- 
age is perceived at any given moment [52]. The perception flips from one image 
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to the other randomly, with a characteristic timescale that depends on the experi- 
mental setup. The studies in question [36, 371 were done in awake strabismic cats, 
a preparation with two advantages: V1 neurons are dominated by a single eye, so 
their firing rates essentially depend on what their dominant eye sees regardless of 
the other one, and it is relatively easy to know which of the two images is perceived 
(at equal contrasts for the two images, one eye always suppresses the other, and 
this can be measured by tracking the cat7s eye movements in response to conflicting 
moving stimuli). The two conditions compared were: a single image presented to 
the eye driving the recorded neurons, or the same stimulus shown to the driving eye 
plus a conflicting image presented to the other eye. The firing rates in these two 
conditions should be the same, because strabismus makes most neurons monocular; 
indeed, the rates did not change very much across conditions and did not depend on 
which image was perceived. However, synchrony within the 40 Hz band did change 
across conditions [36,37]. When neurons were driven by the eye providing the per- 
cept, syncfirony was much stronger in the rivalrous condition than in the monocular 
one. In contrast, when neurons were driven by the eye whose image became sup- 
pressed, synchrony was much lower in the rivalrous condition than in the monocular 
one. In other words, when conflicting images were presented, neurons responding 
to ?the image being perceived were always more synchronized. In this case, stronger 
synchronization in the high frequency band (30-70 Hz) is suggested to be a neural 
correlate of stimulus selection [36,37]. 

In summary, it is possible that correlations between neurons can be controlled 
independently of firing rate. Two ideas that have been put forth are: that this may 
serve to generate more efficient neural codes [7 1,441, which follows from theoretical 
arguments and experiments in which correlations vary in a stimulus-dependent way, 
or to regulate the flow of information [68], which follows from experiments in which 
correlations have been linked to expectation, attention, sensory latencies and rivalry 
- all processes that regulate the strength but not the content of sensory-derived 
neural signals. Other alternatives may become apparent in the future. 

Next we discuss some common types of correlated activity patterns. In part, the 
goal is to describe them mathematically, at least to a first-order approximation. 

12.3 Correlations arising from common input 
As mentioned above, oscillations and synchronous responses are commonly ob- 
served throughout the nervous system 18-86]. This is not particularly surprising; 
in fact, correlations are to be expected simply because neurons in the brain are ex- 
tensively interconnected [14,91]. Now we will discuss two major mechanisms that 
give rise to correlated activity, common input and recurent connectivity. The dis- 
tinction between them is somewhat artificial, but it is useful in portraying the range 
of correlation patterns that may arise. Although they will not be included, it should 
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be kept in mind that intrinsic oscillatory properties of neurons are also important in 
determining global rhythmic activity 153-541. 

An important analytical tool used to study the joint activity of neurons is the cross- 
correlation histogram or cross-correlogram [63-151, which is constructed from p a h  
of spike trains. This function shows the probability (or some quantity proportional 
to it) that neuron B fires a spike t milliseconds before or after a spike from neuron 
A, where t is called the time shift or time lag. When the two spike trains are in&- 
pendent, the cross-conelogram is flat; when they covary in some way, one or more 
peaks appear [15]. A peak at zero time shift means that the two neurons tend to 
fire at the same time more often than expected just by chance. Interpreting a cross- 
correlogram constructed from experimental data can be quite difficult because any 
covariation during data collection will show up as a peak [15]. 7ko  neurons, for 
example, may respond at the same time to changes in stimulation conditions even if 
they are independent; this will produce a peak that has nothing to do with the func- 
tional connectivity of the circuit, which is what one is usually interested in. Another 
problem with this technique is that it requires large amounts of data. These disad 
vantages, however, have much lesser importance with simulated spike trains because 
they can be very long and their statistics can be constant. 

Figure 12.1 shows synthetic, computer-generated spike trains from neurons that 
share some of their driving inputs but are otherwise disconnected. Responses from 
20 neurons are displayed in each panel. Continuous traces superimposed on the 
spike rasters show the mean spike density or instantaneous firing rate, averaged over 
all neurons; this quantity is proportional to the probability of observing a spike from 
any of the neurons at any given time. Cross-correlograms are shown below. As 
mentioned above, the y-axis indicates the probability of observing a pair of spikes 
separated in time by the amount on the x-axis. The normalization is such that the 
probability expected by chance is equal to 1. The spikes shown were produced by 
integrate-and-fire model neurons [24, 67, 821, each driven by two time-varying sig- 
nals, gE (t) and g,(t), representing the total excitatory and inhibitory conductances 
generated by large numbers of synaptic inputs. Details of the model are given in the 
Appendix. To generate synchronous activity between postsynaptic responses, the 
conductances gE (t) and gI(t) were correlated across neurons. This is exactly what 
would happen if pairs of postsynaptic neurons shared some fraction of all presynap- 
tic spike trains driving them. In Figure 12.la the mean correlation between conduc- 
tances was 0.2. This means that, for any pair of neurons i and k, the correlhtion 
coefficient between excitatory conductances, 

was approximately 0.2. In this expression the angle brackets <> indicate an aver- 
age over time, and neurons are indexed by a superscript. Inhibitory conductances 
also had a correlation of 0.2 across neurons, but all excitatory and inhibitory conduc- 
tances were independent of each other. The nonzero correlation between conduc- 
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Figure 12.1 

Spike trains correlated by common input. Each panel includes 20 computer- 
generated spike trains. Each row represents one neuron and each small, vertical 
line one spike. Neurons were modeled as leaky integrate-and-fire units disconnected 
from each other but driven by synaptic conductances that co-fluctuated across neu- 
rons. Continuous traces superimposed on the rasters are firing rates, averaged over all 
neurons, obtained by smoothing the spike trains with a Gaussian function with o=10 
ms. Plots below the rasters are cross-correlation histograms averaged over multiple 
distinct pairs of units. These were based on longer spike trains that included the 
segments shown. 

tances gives rise to the sharp peak in the histogram of Figure 1 2 . 1 ~  
Figure 12.lb was generated using the same correlation values, but the excitatory 

signals g E ( t )  varied more slowly (in addition, their magnitude was adjusted so that 
similar output rates were produced). The characteristic time at which g E ( t )  varies is 
its correlation time. Below we describe this quantity more accurately; for the mo- 
ment the crucial point is that in Figure 12.1 the correlation time of gE (t) corresponds 
to the time constant of excitatory synapses, TE. This is essentially the duration of 
a unitary synaptic event. In Figure 12. la the synaptic time constants for excitation 
and inhibition were both equal to 2 ms. In Figure 12,lb q stayed the same but z~ 
was increased to 20 ms. As can be seen in the raster, this changed the postsynaptic 
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responses: the spike trains are more irregular; the spikes of a single neuron tend to 
appear in clusters. The two timescales show up in the cross-correlogram as a sharp 
peak superimposed on a wider one. Figure 1 2 . 1 ~  shows what happens when both 
synaptic time constants are set to 20 ms. Now the clustering of spikes in individual 
spike trains is even more apparent and the cross-correlogram shows a single, wide 
peak. 

The correlations between conductances parameterize the degree of synchroay a- 
mong output responses. When the correlations are 0 the responses are independent 
and the cross-correlagram is flat; when the correlations are equal to 1 all neurons 
are driven by the exact same signals and thus produce the same spike train - this 
is perfect synchrony. Figures 12.la-12.1~ were generated with  orr relations of 0.2, 
whereas Figures 12.ld-12.lf were generated with correlations of 0.5. Notice that 
the shapes of the histograms in the top and bottom rows are the same, but the y- 
axis scales in the latter are much larger. Larger correlations always produce mdre 
synchrony and larger fluctuations in instantaneous firing rates (continuous traces). 
In addition, they may also alter the postsynaptic firing rates, but this effect was in- 
tentionally eliminated in Figure 12.1 so that different synchrony patterns could be 
compared at approximately equal firing rates. 

These examples show that there are at least two important factors determining 
the synchronous responses caused by common input: the amount of common input, 
which corresponds to the magnitudes of the correlations between conductances, and 
the timescales of the input signals, which in this case are determined by synaptic 
parameters. Andogously, there are two aspects of the cross-correlation function that 
are important, the height of the peak and its width. 

12.4 Correlations arising from local network 
interactions 

Networks of recurrently interconnected neurons may naturally give rise to oscillatory 
and synchronous activity at various frequencies; this is a well documented finding 
194-1'71. The type of activity generated depends on the network's architecture, on 
its inputs, and on single-cell parameters. Here we illustrate this phenomenon with a 
highly simplified network with the following properties, (1) Model neurons, excita- 
tory and inhibitory, are of the integrate-and-fire type, without any intrinsic oscillato~ 
mechanisms. (2) Synaptic connections between them are all-to-all and random, with 
strengths drawn from a uniform distribution between 0 and a maximum value g-; 
this is both for excitatory and inhibitory contacts. (3) A11 neurons receive an external 
input drive implemented through fluctuating conductances gE (t) and gI (t), which are 
uncorrelated across neurons. 

Figure 12.2 illustrates some of the firing patterns produced by such a network. 
For Figure 12.2a the recurrent connections were weak, i.e., g,, was small. The 





where t is the time lag and z,,,,, which determines its width, is the correlation time. 
This function is related to many types of random processes [87,42]. Indeed, below 
we will use it to characterize the total input that drives a typical cortical neuron. 

So far, we have looked at a variety of correlation patterns that a network may 
display. Next, we take the point of view of a single downstream neuron that is driven 
by this network. From this perspective we return to an important question posed 
in the introduction: how does the response of a postsynaptic neuron depend on the 
full set of correlated spike trains that typically impinge on it? Equation 12.2 will be 
used as a rough characterization of those correlations. The answer will be presented 
in two parts, First we will discuss some of the main factors determining whether 
input correlations have an impact on the postsynaptic response, and roughly to what 
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phases are averaged out, making the correlation flat everywhere except in the central 
region. As in Figure 12.1, compensatory adjustments were made so that average 
firing rates remained approximately the same; in this case the external excitatory 
drive was slightly decreased as the connection strengths increased. 

Figures 12.2d and 12.2e show that even such a simplified network may have quite 
complex dynamics. Parameters in Figure 12.2d were identical to those of Figure 
12.2b, except for two manipulations. First, for recurrent excitatory synapses only, 
the synaptic time constant was increased from 3 to 10 ms; and second, to compen- 
sate for this, the synaptic conductances were multiplied by 3/10. This generated 
approximately the same firing rates and also preserved the average recurrent conduc- 
tance level. However, as a consequence of these changes the cone1ations between 
postsynaptic spikes almost disappeared. Thus, the tendency to fire in phase is much 
larger whenthe characteristic timescales for excitatory and inhibitory synaptic events 
are the same. This is reminiscent of resonance. 

Figure 12.2e illustrates another interesting phenomenon. In this case the timescales 
of both excitatory and inhibitory recurrent synapses were set to 10 ms, while the char- 
acteristic time of all external input signals stayed at 3 ms. The mean conductance 
levels, averaged over time, were the same as in Figure 12.2c, so the connections were 
relatively strong. Now the peak in the cross-correlation histogram (Figure 12.2e) is 
much wider than expected, with a timescale on the order of hundreds of milliseconds. 
Such long-term variations are also apparent in the spike raster and in the firing rate 
trace, This is quite surprising: firing fluctuations in this network occur with a char- 
acteristic time that is at least an order of magnitude longer than any intrinsic cellular 
or synaptic timescale. Discussion of the underlying mechanism is beyond the scope 
of this chapter, but in essence it appears that the netwo& makes transitions between 
two pseudo steady-state firing levels, and that the times between transitions depend 
not only on cellular parameters but also on how separated the two firing levels are. 

In any case, a key point to highlight is that, in all examples we have presented, the 
cross-correlation histograms show a common feature: a central peak with a shape 
that resembles a double-exponential. That is, the correlation function can be de- 
scribed as 
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degree. Then we will present a mathematical model that is somewhat abstract but 
that can be solved analytically and can provide some quantitative insight into the 
problem. 

12.5 When are neurons sensitive to correlated 
input? 

The goal of this section is to identify some of the main factors that determine the 
sensitivity of a postsynaptic cortical neuron to the presence of correlations in its 
inputs. 

Synapses generate discrete events that are localized in time. Hence the basic in- 
tuition suggesting that timing is important: if action potentials from two excitatory 
neurons arrive simultaneously or within a short time window of each other to the 
same postsynaptic neuron, the two synaptic events may add up, producing a larger 
conductance change. Roughly, depending on the time interval between their arrivals, 
two presynaptic action potentials may act as two separate events of unit amplitude 
and duration, as one event of unit amplitude but lasting twice as long, or as one event 
of double amplitude and unit duration. If excitatory spikes have a tendency to arrive 
simultaneously more often than expected by chance, the target neuron might respond 
more vigorously. 

This idea has been confirmed through simulation studies [13, 601. Compared to 
independent spike trains, synchronous spikes may evoke stronger responses, but only 
up to a point, after which further synchronization actually decreases the response 113, 
601. This decrease occurs for two reasons. First, only a certain number of simultane- 
ous excitatory synaptic events are required to trigger an action potential, so, once this 
number is reached, other simultaneous spikes cannot enhance the response. Second, 
excitatory spikes that arrive while the postsynaptic cell is in its refractory period are 
wasted. Thus, there is a tradeoff between two effects: on one hand, grouping excita- 
tory spikes in time so that synaptic events summate; on the other, spreading them so 
that refractory effects are avoided. 

' '-This line of argument, however, has serious limitations. Refractory effects be- 
'dome important only when the output neuron is firing near its maximum rate, which 
is rarely the case. And more importantly, inhibition is not considered. Inhbition al- 
ters the scenario in three ways. (1) It may affect the sensitivity of the postsynaptic 
neuron to synchronous excitatory spikes. (2) Synchrony affects not only the average 
response of the cell but also the variability of the output spike train, and this too may 
depend on the level of inhibition. (3) Additional questions arise about the effects of 
synchrony between pairs of inhibitory input spikes and between excitatory-inhibitory 
pairs as well. In short, the situation gets considerably more complicated. The spec- 
trum of possible firing modes of a neuron is often split between two extreme cases, 
integration and coincidence detection. 
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12.5.1 Coincidence detection 

The classic mechanism underlying a neuron's sensitivity to temporal patterns is, CO: 

incidence detection 12-50]. Neurons can certainly be sensitive to the arriGal of spikei 
from two or more inputs within a short time window; the most notable examples are 
from the auditory system [5,21]. The question is, however, whether this mechanism 
is commonly used throughout the cortex. 

In the traditional view, coincidence detection is based on a very short membrane 
time constant [2-501. However, it may be greatly enhanced by the spatial arrange- 
ment of synapses and by nonlinear processes. For instance, nearby synapses may 
interact strongly, forming clusters in which synaptic responses to simultaneous acti- 
vation are much stronger than the sum of individual, asynchronous responses [58]. 
A neuron could operate with many such clusters which, if located on electrotonically 
distant parts of the dendritic tree, could act independently of each other. Voltage- 
dependent channels in the dendrites may mediate or boost such nonlinear interac- 
tions between synapses [58-64]. These nonlinearities could in principle increase 
the capacity for coincidence detection to the point of making the neuron selective for 
specific temporal sequences of input spikes, and the very idea of characterizing those 
inputs statistically would be questionable. However, the degree to which the cortex 
exploits such nonlinearities is uncertain. 

The coincidence detection problem can also be posed in terms of the capacity of 
a network to preserve the identity of a valley of spikes fired by multiple neurons 
within a short time window [18, 311. Suppose a neuron receives a volley of input 
spikes; what is the likelihood of evoking a response (reliability), and what will its 
timing be relative to the center of mass of the input volley (precision)? Theoretical 
studies suggest that the temporal precision of the response spikes is not limited by 
the membrane time constant, but rather by the up-slope of excitatory synaptic events. 
Thus, under the right conditions a volley of synchronized action potentials may prop- 
agate in a stable way through many layers [3 11. Whether areas of the cortex actually 
exchange information in this way is still unclear, and other modes of information 
transmission are possible [88]. 

12.5.2 Fluctuations and integrator models 

The flip side of coincidence detection is integration. Neurons may also sum or av- 
erage many inputs to generate an action potential [2, 50, 731. Earlier theoretical 
arguments suggested that neurons acting as integrators would not be sensitive to 
temporal correlations [74], or that these would only matter at high firing rates, where 
refractory effects become important [13, 601, However, later results [67,69] show 
that neurons may still be highly sensitive to weak correlations in their inputs even if 
there is no spatial segregation along the dendritic tree and no synaptic interactions 
beyond the expected temporal summation of postsynaptic currents. 

A key quantity in this case is the balance of the neuron, which refers to the relative 
strength between inhibitory and excitatory inputs [67, 82, 731. When the neuron 
is not balanced, excitation is on average stronger than inhibition, such that the net 
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synaptic current is depolarizing and the mean steady-state voltage is near or above 
threshold. In this case the main driving force is the drift toward steady state, and input 
fluctuations have a small effect on the rate of output spikes [67,33]. On the other 
hand, when the neuron is balanced, both excitation and inhibition are strong, the 
mean input current is zero or very small, and the mean steady-state voltage remains 
below threshold, However, the neuron may still fire because there are large voltage 
fluctuations that lead to random threshold crossings. In this mode, any factor that 
enhances the fluctuations will produce more intense firing 167,321. 

There is a subtle but important distinction between mechanisms that may alter in- 
put fluctuations. Higher rates shout! be seen in a balanced neuron if fluctuations 
increase without affecting the mean synaptic conductances, as when only the corre- 
lations change [67]. But if stronger fluctuations are accompanied by increases in 
total conductance, as when both excitatory and inhibitory inputs fire more intensely, 
the firing rate may actually decrease [32-221. In a complex network these effects 
may be hard to disentangle. 

Figure 12.3 compares the responses of balanced (upper traces) and unbalanced 
(lower traces) model neurons [67]. These were driven by excitatory and inhibitory 
input spike trains similar to those illustrated in Figure 12.1. For the balanced neuron 
both excitatory and inhibitory synaptic conductances were strong, and the combined 
current they generated near threshold was zero. In contrast, for the unbalanced unit 
both conductances were weak, but their combined current near threshold was ex- 
citatory. The four panels correspond to different correlation patterns in the inputs. 
In Figure 12.3a all inputs are independent, so all cross-correlograms are flat. The 
voltage traces reveal a typical difference between balanced and unbalanced modes: 
although the output rate is approximately the same, the subthreshold voltage of the 
balanced neuron is noisier and its interspike intervals are more variable [67, 821. 
Figure 12.3b shows what happens when the excitatory inputs fire somewhat syn- 
chronously due to common input. The firing rate of the balanced neuron always 
increases relative to the response to independent inputs, whereas the rate of the un- 
balanced neuron may show either a smaller (although still substantial) increase or a 
decrease [13,60]. Another effect of synchrony is to increase the variability of the 
output spike trains, both for balanced and unbalanced configurations [67,69,78,80]; 
this can be seen by comparing Figures 12.3b and 3d with Figure 12.3a. Correlations 
between inhibitory inputs can also produce stronger responses. When the inhibitory 
drive oscillates sinusoidally, as in Figure 12.3c, the balanced neuron practically dou- 
bles its firing rate compared to no oscillations; in contrast, the unbalanced does not 
change. 

The balance of a neuron is important in determining its sensitivity to correlations, 
but there is another key factor 1671. There are three correlation terms: correlations 
between pairs of excitatory neurons, between pairs of inhibitory neurons, and be- 
tween excitatory-inhibitory pairs. The first two terms increase the voltage fluctua- 
tions but the last one acts in the opposite direction, decreasing them. The total effect 
on the postsynaptic neuron is a function of the three terms. In Figure 12.3 d, all 
inputs to the model neurons are equally correlated, but the balanced model shows 
no change in firing rate. Thus, it is possible to have strong correlations between all 
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Responses of two model neurons to four input correlation patterns. Histograms on 
the left show average cross-correlations between pairs of excitatory input spike trains 
(EE), between inhibitory pairs (11), and between excitatory-inhibitory pairs (EI). Y- 
axes in the correlograrns go from 0.7 to 1.4. Upper and lower traces in each panel 
show the responses of balanced and unbalanced neurons, respectively. The rate of 
inhibitory inputs was always equal to 1.7 times the excitatory rate. For all middle 
traces the excitatory input rate was 42 spikeds. The plots on the right show the 
firing rates of the two (postsynapti.~) model neurons versus the mean firing rate of 
the (presynaptic) excitatory inputs. Thin black lines are the curves obtained with 
independent inputs (top panel). The two output neurons were leaky integrate-and- 
fire units with identical parameters; they differed in the relative strength of their 
excitatory and inhibitory inputs. (Adapted from [67] and 1681.) 

inputs but still not see a change in the firing rate of the postsynaptic neuron relative 
to the case of independent inputs. 

In summary, a balanced-neuron is much more sensitive to input correlations than 
an unbalanced one because correlations affect the fluctuations in synaptic drive, 
which cause the balanced neuron to fire. However, the postsynaptic response de- 
pends on the relative values of the three correlation terms, which may cancel out. 
The key point here is that even when neurons act as integrators they can, in a statis- 
tical sense, be highly sensitive to the temporal patterns of their input spikes. 

Interestingly, at least in some pyramidal neurons, distal dendrites seem to act much 
more like coincidence detectors than proximal dendrites 1931, so real neurons may, 
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Time lag 

Figure 12.4 

Parameterization of a continuous conductance trace. The top graph represents the to- 
tal synaptic conductance generated by excitatory spikes driving a postsynaptic neu- 
ron. This conductance can be characterized statistically by its mean p, standard 
deviation o, and correlation time zcorr. The left histogram is the distribution of con- 
ductance values of the top trace. The histogram on the right is its autocorrelation 
function. The width of the peak is parameterized by zcorr. The bottom graph shows a 
binary variable that approximates the continuous trace. The binary function has the 
same mean, standard deviation and correlation time as the original function 1691. 

to some extent, combine both types of firing modes. 

12.6 A simple, quantitative model 
Now we discuss a simple model for which the responses to correlated input can be 
calculated analytically 1691. The first step is to describe its input. 

12.6.1 . . Parameterizing the input 

The input to a neuron consists of two sets of spike trains, ones that are excitatory 
and others that are inhibitory. What are the total synaptic conductances generated 
by these spikes? How can they be. characterized? An example generated through 
;a.computer simulation is shown in Figure 12.4. The top trace represents the total 
excitatory conductance gE (t) produced by the constant bombardment of excitatory 
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synapses onto a model neuron. When plotted versus time, the time course looks 
noisy, random. Because gE( t )  is the result of thousands of individual synaptic events, 
the distribution of conductance values should be approximately Gaussian, with mean 
and standard deviation 

where the angle brackets <> indicate an average over time. The histogram on the 
left in Figure 12.4 shows the distribution of g~  values for the top trace. Indeed, it is 
close to a Gaussian, even though the trace is relatively short (1 s long sampled at 1 
ms intervals). The mean and standard deviation, however, are not enough to charac- 
terize the conductance trace because it fluctuates with a typical timescale that has to 
be determined independently. The histogram on the right shows the autocorrelation 
function of the trace. This is &in to the cross-correlation functions discussed earlier, 
except that the correlation is between a continuous function and itself. Now a peak 
centered at zero time lag indicates that gE( t )  and gE ( t  +At) tend to be similar to 
each other, and the width of the peak tells how fast this tendency decreases. A flat 
autocorrelation means that all values of g~  were drawn randomly and independently 
of each other. Thus, an autocorrelation function that is everywhere flat except for a 
peak centered at zero is the signature of a stochastic function that varies relatively 
smoothly over short timescales but whose values appear entirely independent when 
sampled using longer intervals. The autocorrelation function can be computed an- 
alytically for a variety of noise models, and it is typically a double exponential, as 
in Equation 12.2, with C,, = C T ~ .  Identical considerations apply to the conductance 
generated by inhibitory synapses. 

From Figures 12.1 and 12.2 and from these observations, it appears that a rea- 
sonable framework to describe the total excitatory and inhibitory conductances that 
drive a cortical neuron is to model them using two random signals with given means, 
standard deviations and correlation times. Indeed, this approach has been tested ex- 
perimentally, with highly positive results [29, 301. This is also what was done to 
generate the spikes in Figure 12.1 (see Appendix). As explained below, this approx- 
imation is very good; for the leaky integrate-and-fire model the responses obtained 
using this method versus actual spike trains are virtually identical within a large pa- 
rameter range (not shown). 

In general, calculating the three parameters for gE ( t )  or gr(t)  from the quantities 
that parameterize the corresponding input spike trains is difficult. However, this 
can be done under the following simplifying assumptions. Suppose there are NE 
excitatory spike trains that are independent, each with Poisson statistics and a mean 
rate r-E. Also suppose that the synapses operate like this: whenever an input spike 
arrives, gE ( t )  increases instantaneously by an amount GE;  otherwise, gE ( t )  decreases 
exponentially toward zero with a time constant TE (see ref. [24]). For this simple 
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scheme it can be shown [8 11 that 

with the correlation function having a double-exponential shape. Thus, for this sit- 
uation, a model neuron in a simulation can be driven by two methods. First, by 
generating independent Poisson spikes and increasing the conductance every time 
one such spike arrives, exactly as described above. In this case parameters GE, r ~ ,  
NE, z ~ ,  and the corresponding quantities for inhibitory inputs need to be specified. 
The second method is to generate the fluctuating signals gE ( t )  and gl ( t )  directly by 
combining random numbers, in which case only the respective p ,  o and zcorr are 
strictly required. Neuronal responses evoked using this type of model can match 
experimental data quite well [29,30]. 

When the assumptions of the case just discussed are violated, for instance, when 
the spikes driving a neuron are not independent, determining p, o and Tcorr analyti- 
cally becomes much more difficult. However, in general one should expect correla- 
tions to increase o ,  and the correlation time should be equal to the synaptic time con- 
stant, although it may increase further if the input spikes are correlated over longer 
timescales. 

Next, we ask how each of the three key parameters, p ,  o and zcorr, affects the 
response of a postsynaptic neuron. 

12.6.2 A random walk in voltage 

The model neuron we consider is the non-leaky, integrate-and-fire neuron [67, 69, 
401, whose dynamics resemble those of random walk models used to study diffusion 
in physical systems [87,42,41,12]. The voltage V of this unit changes according to 
the input I ( t )  that impinges on it, such that 

where z is its integration time constant. In this model an action potential is produced 
when V exceeds a threshold Ve. After this, V is reset to an initial value Vreset and the 
,integration process continues evolving according to the equation above. This model 
is related to the leaky integrate-and-fire model [24, 67, 821 but it lacks the term 
proportional to -V in the right-hand side of the differential equation. An additional 
and crucial constraint is that V cannot fall below a preset value, which acts as a 
'barrier. For convenience the barrier is set at V=O, so only positive values of V are 
allowed. This choice, however, makes no difference in the model's dynamics. Except 
for the barrier and the spike-generating mechanism, this model neuron acts as an 
ideal integrator, with an integration time constant z. 
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Here the input I(t) is the total current, including excitatory and inhibitory compo- 
nents. To simplify things even further, we will consider I(t) to be a noisy function 
with mean p ,  standard deviation o, and correlation time Tcorr. Note, however, that 
these quantities now refer to the total current, not to the conductances, as before; 
this is just to simplify the notation. In this scheme it is not clear how exactly Z(t) is 
related to gE(t) and gl(t), which in principle are the measurable parameters of real 
neurons. However, evidently p should depend on the means of the conductances, 
o should depend on their standard deviations, and Tmrr should depend on their cor- 
relation times. This qualitative relationship is good enough to proceed because q e  
model is somewhat abstract anyway. 

The quantity that we are interested in is T ,  the time that it takes for V to go fro9 
reset to threshold. T is known as the first passage time or the interspike interval; 
what we want to know are its statistics. The key for this [69] is to rewrite Equation 
12.5 as follows 

dV 
T- = p + ~ Z ( t ) ,  (12.6) 

dt 
where Z(t) is a binary variable that can only be either +I  or -1 and whose correla- 
tion function is a double exponential with correlation time z,,,,. Thus I(t) has been 
replaced by a stochastic binary function that indicates whether I(t) is above or be- 
low its average. This approximation is illustrated in Figure 12.4 (bottom trace). The 
binary function has the same mean, standard deviation and correlation time as I(t). 
This substitution allows us to solve Equation 12.6 analytically [69]. Notice also that 
the neuron's time constant z simply acts as a scale factor on the input. Hereafter it 
will be considered equal to 1. 

Figure 12.5 shows examples of spike trains produced by the model when driven by 
the binary, temporally correlated input. In this figure p was negative, so on average 
the voltage tended to drift away from threshold, toward the barrier. In this case 
the spikes are triggered exclusively by the random fluctuations, as measured by 
o ;  without them the neuron would never reach threshold. In Figures 12.5a-12.5~ 
the correlation time is zcorr=l ms. For a binary variable like Z, which switches 
between +1 and - 1, the correlation time corresponds to the average time one needs 
to wait to observe a change in sign. In other words, the correlation time is equal to 
half the average time between sign changes. Thus, the input in Figure 12.5a (lower 
trace) flips state approximately every 2 ms. Figure 1 2 . 5 ~  shows that, under these 
conditions, the neuron fires at a relatively low rate and irregularly; the times between 
spikes or interspike intervals are quite variable, which can also be seen from the 
interspike-interval distribution in Figure 12.5b. 

When zcor, is increased to 5 ms, as in Figures 12.5d-12.5f7 the changes in input 
state occur approximately every 10 ms (Figure 12.5dY lower trace). This produces 
a large increase in mean firing rate and, to a lesser extent, an increase in variability. 
This can be seen by comparing the spike trains from Figuresl2.5~ and 12.5f. The 
respective mean rates are 10 and 37 spikesls. Notice that there is a short time interval 
that appears very frequently. The short interval results when the input stays positive 
for a relatively long time, as is the case with the pair of spikes in Figure 12.5d. This 
interval is equal to (Ve -V-)/(p +o), which is the minimum separation between 
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Figure 12.5 

Responses of the nonleaky integrate-and-fire mode1 driven by correlated, binary 
noise. The input switches states randomly, but on average the same state is main- 
tained for 22,,,, ms. Sample voltage and input time courses are 50 ms long. Raster 
plots show 6 seconds of continuous simulation time. For the three top panels the 
correlation time z,,,, was 1 ms; for the lower panels it was 5 ms. (Adapted from 
16%) 

spikes in the model given p and o. The number of spikes separated by this interval 
grows as the correlation time increases. At the same time, however, longer correla- 
tion times also give rise to long interspike intervals, which occur because' the input 
can stay in the low state for longer stretches of time. This is why correlation time in- - 
creases variability: it produces both short and long interspike intervals. The quantity 
that is most often used to measure the regularity of a spike train is the coefficient of 
variation, or C h ,  which is equal to the standard deviation of the interspike inter- 
vals divided by their mean. The CVIsI in Figures 1 2 . 5 ~  is equal to 1, as for a Poisson 
process; in Figure 12.5f it is equal to 1.18, which reflects the higher variability. Note 
that y and o are the same for all panels. This demonstrates that the input correlation 
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time may have a very strong impact on the response of a postsynaptic neuron [69]. 
This is an interesting observation because little is known about the dynamic role of 
this parameter. 

12.6.3 Quantitative relationships between input and output 

The solution to the non-leaky model of Equation 12.6 consists in the moments of T, 
(T), ( T ~ )  and so forth. For each of these moments there are three sets of analytic 
expressions, because details of the solutions depend on the relative values of p and 
o. Here we only discuss the expressions for the average interspike interval (T), 
which is the inverse of the mean firing rate, but ( T ~ )  and therefore the CVISI can also 
be obtained in closed form [69]. 

When y -> o ,  

In this case there is a strong positive drift toward threshold. Even when Z is equal 
to -1 the total input is positive; in other words, the voltage gets closer to threshold 
in every time step, whether the fluctuating component is positive or negative. The 
mean firing rate behaves as if the input were constant and there were no fluctuations. 
This can be seen in Figure 12.6, which plots the mean firing rate and the WISI of 
the model neuron as a function of o for various combinations of the other two input 
parameters. The values of y are indicated in each column, and the three curves 
in each plot correspond to z~~~~ equal to 1, 3 and 10 ms, with higher correlation 
values always producing stronger responses and higher variability. Continuous lines 
and dots correspond to analytic solutions and simulation results, respectively. Notice 
how, when y=0.02, the firing rate stays constant for o below 0.02, although.the 
variability increases most sharply precisely within this range. 

When y=O, 

Clearly, the average interspike interval decreases with both zmrr and o. In this 
case there is no drift, no net displacement; the voltage advances toward thresh- 
old when Z=+1 and retreats toward the barrier when Z = - 1. Under these condi- 
tions the neuron is driven exclusively by fluctuations. The middle column of Figure 
12.6corresponds to this regime. As can be seen, the variability of the neuron also 
increases monotonically with o and Tmrr. 

Finally, when y 5 o ,  

where we have defined 
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Figure 12.6 

Mean firing rate and coefficient of variation for the nonleaky integrate-and-fire neu- 
ron driven by correlated binary noise. Continuous lines are analytic expressions and 
dots are results from computer simulations. Each simulation data point was based on 
spike trains containing 2000 spikes. The three curves in each graph are for different 
values of zmr,.: 1 ms (lower curves), 3 ms (middle curves), and 10 ms (upper curves). 
(Adapted from [69] .) 

As with the above equations, Figure 12.6 reveals the excellent agrement between 
this expression and computer simulations. An interesting special case is obtained 
when o=p,  or c=l. Then the total input is zero every time that Z equals -1, so 
half the time V does not change and half the time V increases by 2y in each time 
step. Therefore, the average time to threshold should be equal to (Ve - Vreset)/p, 
which is precisely the result from Equation 12.9. This quantity does not depend on 
the correlation time, but the CVIsI does. The analytic expression for the CVlsI is 
particularly simple in this case: 

Thus, the variability of the output spike train diverges as z,,,, increases, but the mean 
rate does not, 

This last observation is valid in a more general sense, and is an important result 
regarding the effects of correlations. In most cases, the limit behaviors of the firing 
rate and the WISI as the correlation time increases are quite different: the rate tends 
to saturate, whereas the variability typically diverges. This is illustrated in Figure 
12.7, The one condition in which the variability saturates as the correlation time 
tends to infinity is when p is larger than o (thickest line an right column). The 
asymptotic value of the CVIsI in this case is c / d G .  In this parameter regime the 
drift is strong, so it usually produces high firing rates as well. 
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Figure 12.7 

Responses of the nonleaky integrate-and-fire neuron as functions of input correlation 
time zcorr. Only analytic results are shbwn. As the correlation time increases, the 
firing rate always tends to an asymptotic value. In contrast, the C b  diverges always, 
except when p > 0; this case corresponds to the thickest line in the plots on the right. 
(Adapted from [69].) 

The key to obtain all the analytic expressions was the use of a binary input. One 
may wonder, however, whether the results are valid with a more realistic input sig- 
nal. It turns out that, for this model, the mean firing rate and the C h  obtained using 
correlated Gaussian noise are very similar to those obtained with binary noise. This 
is not entirely unexpected, first, because the neuron essentially adds its inputs, and 
second, because Gaussian noise can be properly approximated as the sum of mul- 
tiple binary random samples, as a consequence of the central limit theorem. This 
is strictly true when all binary and Gaussian samples are independent, that is, when 
the autocorrelation functions are everywhere flat, but the approximation works quite 
well even when there is a correlation time. For example, the rate and the WIsI still 
increase as functions of correlation time, and the same asymptotic behaviors are seen 
W I .  

12.7 Correlations and neuronal variability 
The spike trains of neurons recorded in awake animals are highly variable [25,75- 
781. However, spike generation mechanisms themselves seem to be highly reliable 
[20,49, 561. The contrast between these two observations stirred a fair amount of 
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discussion, especially after the work of Softky and Koch [76], who pointed out that 
although the C b  of typical cortical neurons is close to 1, this number should be 
much lower for an integrator that adds up many small contributions in order to fire, 
especially at high output rates. However, their arguments applied in the absence of 
inhibition, and later work [82,73] showed that including incoming inhibitory spikes 
produces higher CVISI values even in integrator models without any built-in coinci- 
dence detection mechanisms [2-501 or similar nonlinearities [58-64], a result that 
is consistent with early stochastic models [41, 841. So-called 'balanced' models, 
in which inhibition is relatively strong, typically bring the CVISI to the range be- 
tween 0.5 and I [73,82], which is still lower than reported from recorded data [25, 
75-78]. Other intrinsic factors have also been identified as important in determin- 
ing spike train variability; for instance, combining the proper types of conductances 
[l 11, tuning the cellular parameters determining membrane excitability [47,82], and 
bistability [92]. 

However, several lines of evidence point to correlations in the conductances (or 
currents) that drive a neuron as a primary source of variability. First, correlated fir- 
ing is ubiquitous. This has been verified through a variety of techniques, including 
in vivo experiments in which pairs of neurons are recorded simultaneously. The 
widths of the corresponding cross-correlograms may go from a few to several hun- 
dred milliseconds [43-771, so they may be much longer than the timescales of com- 
mon AMPA and GABA-A synapses [27]. Second, in vitro experiments in which 
neurons are driven by injected electrical current suggest that input correlations are 
necessary to reproduce the firing statistics observed in vivo 128, 29, 30, 781. This 
is in line with the suggestion that fluctuations in eye position are responsible for a 
large fraction of the variability observed in primary visual neurons, because they 
provide a common, correlating signal [46]. Third, this also agrees with theoretical 
studies [33,67]; in particular with results for the non-leaky integrate-and fire model 
showing that the C b  depends strongly on the correlation time of the input [69]. 
In addition, similar analyses applied to the traditional leaky integrate-and-fire model 
reveal the same qualitative dependencies [69]. This, in fact, can be seen in Figure 
12.1, where the model with leak was used: increases in the synaptic time constants 
give rise to longer correlation times and to higher CVIsI values (compare Figures 
12.la and 12.lc), an effect that has nothing to do with the synchronization between 
.output spike trains. Finally, high variability is also observed in simulation studies 
in which network interactions produce synchronized recurrent input 185-891, as in 
Figure 12.2. 

12.8 Conclusion 

The activity of a local cortical microcircuit can be analyzed in terms of at least two 
dimensions, its intensity, which is typically measured by the mean firing rates of 
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the neurons, and its coherence across neurons, which is often described in terms 
of synchrony or cross-correlations between pairs of units. These correlations serve 
as probes for the organization and dynamics of neural networks. There is strong 
evidence, both theoretical and experimental, indicating that correlations may be im- 
portant dynamic components of cortical microcircuits. Here we have discussed two 
genera1 hypotheses, the encoding of stimulus features and the gating of informa- 
tion from one structure to another. Although quite different, both are based on the 
premise that correlations have a specific functional role. Interestingly, there is an 
interpretation that is entirely opposite to the sensory-coding hypothesis, which sug- 
gests that correlations between cortical neurons limit the accuracy with which neural 
populations may encode stimulus features I951 (see also El]). These tog-down ideas 
have generated considefable debate, but the crucial question remains unresolved as 
to whether correlations have a specific, separate functional role, or whether they simi 
ply participate in all functions, just as firing rates do. It is also conceivable that there 
is no generic strategy, and that the meaning and impact of correlations vary from one 
local microcifcuit to another. 

A second, critical question is whether correlations can be controlled independently 
of firing rates. That is, a group of neurons M may affect another group A in two, not 
necessarily exclusive, ways: by changing the firing rates of A or the correlations be- 
tween local neurons in A. There are two knobs that can be turned, and the question 
is whether these can be turned independently of each other. Here we reviewed some 
studies that begin to address this issue by taking the point of view of a single neu- 
ron: what intrinsic properties make it sensitive to correlations? How do correlations 
affect its response? Can changes in input correlations and input firing rates be distin- 
guished? The hope is that this bottom-up perspective will eventually help clarify the 
top-down ideas by identifying and constraining the role of correlations in local cir- 
cuit dynamics. A good example of this is the above section on neuronal variability. 
The highly variable discharge of cortical neurons is observed and characterized in 
recordings from awake, behaving preparations; and experiments in vitro, as well as 
computational and theoretical studies, identify a variety of biophysical mechanisms 
responsible for the observation. In this particular case, input correlations seem to 
play a major role because they can generate highly variable output spike trains in the 
absence of any additional intrinsic mechanisms [28,46,69,78]. 

In conclusion, the two questions just pondered may represent high- and low-level 
interpretations of the same phenomenon, but a conceptual framework providing a 
unified view of this problem is still lacking. Establishing such framework, however, 
may serve as a guidelight for future investigations. 



Correlated Neuronal Activity: 'High- and Low-Level Views 367 

12.9 Appendix 
Here we describe the4eaky integrate-and-fire model [24,67,'82,84] driven by con- 
ductance changes that was used to generate Figure 12.1. In this model, the membrane 
potential V evolves according tq 

where the resting potential has been set to 0 mV. The spike-generating currents are 
substituted by a simple rule: whenever V exceeds a threshold (20 mV), a spike is 
emitted and V is clamped to a reset value (10 mV) for a refractory period (1.8 ms). 
After that, V continues evolving according to the above equation. The excitatory 
and inhibitory conductances, gE(t) and gI(t), were generated by combining Gaus- 
sian random numbers [69], so that the resulting traces would have the desired mean, 
standard deviation and correlation time. These parameters were related to input rates 
and model synaptic conductances through Equations 12.4. For Figures 12.la and 
Id, NErE=27.5 spikeslms, G~z0.02, zE=2 ms, NIrr=12.15 spikesfms, Gra.06, and 
zI=2 ms, with GE and GI in units of the leak conductance (i.e., where the leak con- 
ductance equals 1). For Figures 12. l b  and 12. le, zE=20 ms. For Figures 1 2 . 1 ~  and 
12.lf, zr=zE=20 ms. Correlations between the conductances of different neurons 
were generated by drawing correlated Gaussian samples during generation of the 
gE(t) and gI(t) traces for different neurons. The correlation coefficient for a pair 
of conductances, Equation 12.1, is equal to the correlation coefficient between the 
corresponding Gaussian samples. Other parameters were: zrn=20 ms, VE=74 mV, 
VI=- 10 mV, At=0.1 ms. 
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