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Abstract 

A coupled linear chain of Hindmarsh-Rose model neurons with reciprocal inhibition between neighboring neurons exhibited 
synchronous oscillations in which neighboring neurons burst out-of-phase and next nearest neighbor neurons burst in-phase. 
The bifurcations observed inside this "out-of-phase" regime were qualitatively the same for all chains with an even number 
of neurons and were similar to those observed in a single isolated cell, although the organization of the behavior of a chain 
of coupled neurons was more regular than that of an isolated cell. When noise was added to the synaptic coupling strengths, 
there was less hysteresis in the system and many of the bifurcations with smaller basins of attraction were eliminated, making 
the system even more regular. These results suggest that in populations of bursting neurons with reciprocal inhibition, the 
chaotic behavior found in single cells is suppressed. Copyright 0 1998 Elsevier Science B.V. 
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1. Introduction 

The cooperative dynamics of lattices or chains 
of coupled generators has been the focus of con- 
siderable interest for modeling extended chemical, 
biological, and fluid systems. Theoretical studies of 
cooperative behavior include lattices of coupled oscil- 
lators [14,28], the complex Ginsburg-Landau system 
[17,24], lattices of coupled maps [4,22], and lattices 
of chaotic generators [3]. 

Neurons have a wide variety of voltage-dependent 
ionic currents that give rise to complex dynamical be- 
haviors. In studying the dynamical properties of neu- 
ral systems with model neurons coupled in lattices and 
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chains [2,7,10,13,23], a wide range of models for sin- 
gle neurons has been explored, including phase oscil- 
lators, leaky integrate-and-fire models, two-time-scale 
oscillators, and chaotic systems. In models of synap- 
tically coupled neurons, the type of coupling is also 
important in determining the dynamical properties of 
the neural system. 

For the diffusive-type coupling, generally used to 
model physical and chemical extended system, the 
coupling is proportional to linear differences between 
variables describing the states of neighboring genera- 
tors. This is not a suitable model for synaptic trans- 
mission in neuronal systems, where there are complex 
nonlinear mechanisms with history-dependence [ l l ] .  
In the simplest case where time delays and internal 
variables are ignored, the synaptic coupling is often 
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modeled as a static sigmoidal nonlinear input-output 
function with a threshold and saturation. The detailed 
features of this function depend on the type of synapse. 
The analysis of lattices of synaptically coupled neu- 
rons may help in understanding the spatio-temporal 
patterns of the neural activity found in the brain. These 

I systems are also of interest mathematically since they 

i exhibit new dynamical properties. 
In this paper, we study the synchronization and bi- 

furcations observed in chains of synaptically coupled 
chaotic bursting neurons modeled by the Hindmarsh- 
Rose (HR) equations [20]. In Section 2 we consider 
briefly a single HR cell. The dynamics of coupled HR 
models of bursting neurons is examined in Sections 
3-6. Particular attention is given to the effect of the 
coupling on the chaotic behavior of the system, al- 
ready present in isolated bursting neurons, when there 
is inhibitory coupling between the nearest neighbors 
along a chain. Mutually inhibitory coupling between 
neurons is common in central pattern generators [5,27] 
and is also found between inhibitory neurons in the 
reticular nucleus of the thalamus [29]. Both in-phase 
and out-of-phase synchronization of spiking has been 
observed in these networks, depending on the con- 
nectivity and dynamics of the coupling between the 
neurons as well as the properties of the neurons them- 
selves. 

A detailed analysis of out-of-phase synchronization 
for 2-coupled chaotic HR neurons has already been 
presented in [1,32]. These results are extended here 
with a focus on the stability and the bifurcations of 
the limit cycles in the out-of-phase regime. 

2. The dynamic of the single Hindmarsh-Rose 
model neuron 

The HR model [20] was developed as a qualitative 
model for the rhythmic bursts of spikes that occur in 
thalamic cells following hyperpolarizing current injec- 
tion and activation of a low-threshold calcium current 
[29]. It is a simplification of a more detailed biophysi- 
cal model that takes into account the properties of the 
ionic currents underlying the fast sodium spikes and 
the bursts of spikes that ride on a slower calcium ac- 

tion potential [9]. The HR model consists of a third- 
order system of ordinary differential equations that is 
more amenable to analysis: 

where the functions Fl (x) and F2(x) were chosen to 
display the generation of bursts of spikes and are usu- 
ally written in the form 

The variable x ( t )  in (1 )  describes the membrane poten- 
tial of the cell. The other two variables, y( t )  and z ( t ) ,  
are responsible for the fast and slow ionic currents of 
the cell. The parameters of the model in Eq. (1)  are the 
injected current ( I ) ,  the voltage threshold (C ) ,  the in- 
fluence of membrane potential on the slow dynamics 
( S ) ,  and the time scale for slow subsystem ( r ) .  

The set of equations ( 1 )  exhibits several forms of 
dynamics that depend on the values of parameters I ,  
S and C. We choose as the basic bifurcation parame- 
ter the external current I  because this variable can be 
measured and controlled during experiments on burst- 
ing neurons. The values of the other parameters were 
taken to be S  = 4, and C = -1.6. Finally, the small 
parameter r  was set to be equal to 0.0021. 

Fig. 1  shows the coordinate y versus parameter I  on 
the secant x  = 0. To each interval I  E (11( ' ) ,  I?)) there 
corresponds a stable limit cycle L, , where i = 1,2 ,  . . . 
is the number of spikes in the burst. The cycle L, loses 
its stability at the end of this interval and the cycle L,+l 
or L,' appears. Note that, in a general case, 1:) > 

1::: ; therefore, there exist narrow regions of the values 

of the parameters I E ( I I ( ~ ) ~ ,  I?)) in which two stable 
cycles having different numbers of spikes coexist. The 
result of investigation of the bifurcations of the limit 
cycles L, , i = 1,2,  . . . is the following: L  (- I ,  + 1), 

Lz(- l ,  +I ) ,  Ls ( - l ,  +I ) ,  L4(-l ,  +I ) ,  L5(-1, 4-11, 
L6(-1, +I ) ,  L7(-1, +I ) ,  L8(-1, - I ) ,  L9(+1, -11, 
L I O ( ~ - 1 ,  - I ) ,  L11(+1, - I ) ,  L12(+1, -1). The desig- 
nation L, (- 1 ,  + 1 )  means that the cycle L, (which is 
stable in the interval I  E ( I , ( ' ) ,  I?))) has multiplier 
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Fig. 1. One-parameter Poincare map as a functioii of external 
current I for HR model (1) of a single bursting neuron. 

-1 with the second Lyapunov exponent 1 > 0 at the 
( 2 )  point I = Ii"), and multiplier +I  at the point I = Ii . 

For I > 3.221, a strange attractor emerges in the 
phase space of the system (1) as a result of a se- 
quence of period-doubling bifurcations. Finally, for 
I 2 3.295, the system in Eq. (I)  ceases to generate 
bursts, and the dependence x(t) is a chaotic sequence 
of spikes (see details in [15,16,21,31]). 

We have considered the behavior of the system at 
fixed values of the parameters S and C. However, the 
analysis of the bifurcations presented above is qual- 
itatively valid over a wide range of intervals of the 
parameters S(I)  and C(I).  

3. Poincare sections "inside synchronization" for 
coupled neurons 

The main goal here is to characterize the dif- 
ferent regimes of synchronization observed in the 
model system as a function of the strength of the 
inhibitory coupling and the number of coupled neu- 
rons. We focus on even numbers of coupled neurons 
because networks with 2-, 4- and 6-coupled HR neu- 
rons show similar transitions between limit cycles 
as a function of the control parameter. Models with 
small odd numbers of coupled HR neurons are not as 
similar. 

The system under study is 

where r = 0.0021, I = 3.281 and S = 4. The bound- 
ary conditions are periodic, with the last element cou- 
pled to the first one. 

The Poincare sections were calculated for xo = 
0.5, a membrane potential that occurs during a spike. 
Figs. 2(a), (c), and (e) show the projection of the 
Poincare section on the coordinate z for even number 
of coupled HR models for increasing (upper figure) 
and decreasing (lower figure) values of the control pa- 
rameter. 

For small values of the coupling parameter E < 
rw = e i l )  the system behavior is generally chaotic. 
More detailed analysis reveals that there exist narrow 
intervals in the strength of the coupling r where the be- 
havior of the system is regular. Within these intervals 
the model neurons display "in-phase" synchronized 
oscillations. The behavior of the system changes com- 
pletely for r > e,,. Beginning at r = e,,, the system 
demonstrates regular oscillations with "out-of-phase" 
synchronization between the elements. Increasing the 
strength of the coupling for E > e,, produces a se- 
quence of local bifurcations of the periodic orbits. At 
every bifurcation point, r = E L ' ) ,  the periodic orbit 
Lk with k spikes on the burst loses stability and the 
system evolves to a periodic orbit Lk+l with k + 1 
spikes. If E is decreased then the opposite behavior is 

( 2 )  observed (at the point e = rk+l the periodic regime 
(2)  Lk+i loses stability). Since rk+l < EL') for all k ,  in 

the neighborhood of the bifurcation point the stable 
periodic orbits with different number of spikes (and 
consequently with different periods) coexist, and the 
initial conditions determine which regime is realized, 
a form of hysteresis. 



Fig. 2. One-parameter Poincare maps as a function of the strength of the reciprocal inhibitory coupling c between neighboring 
neurons in a linear chain for: (a) two; (b) three, (c) four, (d) five, and (e) six HR model cells. The arrow indicates the direction in 
which the control parameter e was varied to produce the map. 

For 4- and 6-coupled inhibitory neurons, the same has doubled, providing stronger input; this results in 
qualitative behavior is observed as for the two-neuron a larger number of spikes in each burst for the same 
case. The main difference is that the number of in- value of the coupling strength compared to the two- 
hibitory inpub for neurons in the middle of the chain neuron case. 
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It is important to note that for E > ccI, the bif~~rca- 
tions occur during out-of-phase synchronization and 
only modify this behavior by changing the number of 
spikes in a burst. Hence, we call this regime "bifurca- 
tion inside synchronization". 

These results show the similarity of the behavior not 
only between systems with 2 , 4  and 6 coupled neurons 
but also between these systems and a single HR cell. 
In all cases, increasing one of the parameters (external 
current for a single cell and strength of the coupling 
for coupled cells) results in a similar sequence of bi- 
furcations between cycles with different numbers of 
spikes per burst (compare Figs. (1) and (2)). 

For 3 coupled inhibitory neurons, the behavior is not 
as regular as the case for two neurons (see Fig. 2(b)). 
First, much stronger coupling is needed to make the 
behavior regular. Second, the sequence of limit cycles 
is not ordered as before. Finally, the sequence of at- 
tractors observed for increasing values of the control 
parameter is not the same as for decreasing values. As 
a consequence, multistability occurs over broad inter- 
vals of the inhibitory coupling strength. The complex- 
ity of the system with 3 coupled HR neurons is thus 
significantly greater than that for 2 coupled neurons. 
The number of spikes is different on successive bursts, 
which implies a lower degree of symmetry than found 
with an even number of neurons in the chain. 

In Fig. 2(d) the Poincare section for 5-coupled neu- 
rons, a strong coupling is needed to achieve a regular 
behavior, but less strength is required than for 3-HR- 
coupled neurons. Although multistability is still evi- 
dent, the appearance of the Poincare section is more 
similar to the cases with even numbers of neurons. As 
the number of neurons in the chain becomes large, the 
behavior of even and odd chains should converge. 

The multistability observed in system with an odd 
number of coupled neurons can be explained by 
taking into account the translation symmetry of the 
system and the periodic boundary conditions. For an 
even number of neurons in the out-of-phase regime, 
the translation operator to the chain produces the 
same limit cycles, where the translation operator is 
defined as o : (x,+I,  Y,+I,  z ,+I)  -, (x,, YI ,  7 , )  for 
i = 1 ,  . . . ,  N w i t h i = N + l +  1.Theremustbea 
single limit cycle for any initial condition. In contrast, 

for odd numbers of elements in the chain in the out-of- 
phase regime, application of the translation operator 
produces a different limit cycle (because the number 
of spikes per burst is not the same for all units). In 
the case for an odd number of neurons, N limit cycles 
can be realized for different initial conditions. 

i 

4. Local bifurcations for model of coupled neurons 
1 

Consider in detail the local bifurcations of the limit 
cycles in the system of 2-, 4- and 6-coupled elements. 
We are mainly interested in analyzing the case > E,, 

when the stable regimes of the out-of-phase oscilla- 
tions are observed in the system and increasing the 
control parameter 6 transforms the regime of the oscil- 
lations with N spikes to the regime with N $ 1  spikes. 
For 2-coupled cells only the oscillations with N > 8 
are stable and the bifurcations satisfy: L9,10(-l, +I),  
Lk(+l ,  +I),  k > 10. Thus, all bifurcations points 

(1) 
E:''~) are a saddle-node type except for two points e9 

and which correspond to flip bifurcations of the 
cycles L9 and Llo. ' These points have an interesting 
feature. In both cases when E decreases the highest 
multiplier achieves a value of +1 (saddle-node bifur- 
cation) before flipping to a value of - 1 (Fig. 3(a)). At 
the critical point E: (@(E:) = +1) the cycle L9 (Lio) 
has neutral stability in one of the directions. How- 
ever, the bifurcation does not occur at this point and 
a further decrease of the control parameter induces a 
smooth decrease of the multiplier. In the vicinity of 
the points cf) ,  k = 9, 10, the system undergoes a se- 
ries of period-doubling bifurcations that lead to the 
formation of a strange attractor [25,26]. 

The local bifurcations observed in chains with 
four and six neurons are exactly the same as the 
ones found in the two-neuron model: L9, lo (- 1, +I),  
Lk($l, +I),  k > 10. In particular, the dynamics of 
the model in the vicinity of the flip bifurcation points 
6;') and 6;:) has a profile highly similar to that for 
2-coupled neurons (Figs. 3(b) and (c)). This is not 
surprising since the Poincare sections for the regions 

The cycle Lk is stable in the region E E (EL ' ) ,  ~f')).  
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Fig. 3. Real part of the multipliers for: (a) 2.; (b) 4-; and (c) 
6-coupled HR models as a function of increasing inhibitory 
coupling E for a period-doubling bifurcation. Note the similarity 
of the system dynamics in the vicinity of the bifurcation points. 

(1) of the chaotic dynamics near the points 6;') and tlo 

are so similar (see Fig. 2). 
Does the similarity between the models with two 

and four neurons generalize to even larger networks? 
We simulated a chain of 50 reciprocally inhibitory 
coupled elements (not shown) and found the same 
"out-of-phase" patterns. This suggests that some of the 
conclusions reached for chains with an even number 
of neurons may hold for larger chains, and perhaps 
even in the limit as the number of neurons goes to in- 
finity. However, there may be important differences in 
these models that need to be further investigated. 

5. Two-parametric bifurcation diagram for 
2-coupled neurons 

The external current I was used as a control 
parameter for one-parameter bifurcation diagrams in 
Section 2. To analyze the relative role of this parame- 
ter in comparison to the strength of the coupling, we 
examined a two-parameter bifurcation diagram, I (E), 
for 2-coupled neurons (see Fig. 4). The bifurcation 
points .$") have a codimension-1 and transformed 

to the curves E~'")(I) on the plane I (E). The analysis 
of the plane I (E) reveals some interesting features of 

(2) system (3). First, the bifurcation points el') and ek 

Fig. 4. Two-parameter bifurcation diagram as a function of the 
external current I and the inhibitory coupling strength E for 
2-coupled HR models. The points correspond to bifurca- 

tions of codimension-2. The upper segments of the curves € 9 2 ,  
efo and ef1 (above of the points a;, a:0 and a:, , respectively) 
correspond to a saddle-node bifurcation and the lower segments 
of the same curves correspond to the Neimark-Sacker bifurca- 
tion. In contrast, the upper segments of the curves and e iz  

(above of the points atl and a!2, respectively) correspond to 
the Neimark-Sacker bifurcation and the lower segments of the 
same curves correspond to a saddle-node bifurcation. 

(1) corresponding to the increasing ( E ~  ) and decreasing 
(2) (ek ) values of the control parameter have the same 

type (saddle-node) only in the narrow interval of the 
values of the parameter I (3.2, 3.4). This interval 
includes all regions of the chaotic dynamics observed 
in single HR model (see Fig. 1). 

The analysis of the two-parameter bifurcation di- 
agram shows another interesting property of system 
(3).0utside the previously mentioned interval I 
(3.2, 3.5) the bifurcation curves are almost parallel to 
each other and there is an almost linear relationship 
~ f ' ~ )  S + a(1v2)~. In this region any change of 
the parameter E can be balanced (from the point of 
view of the stability of the limit cycles) by a propor- 
tional change of the parameter I. This last point is not 
trivial if we consider that I is the amplitude of the 
effective external current permanently applied to the 
neurons in the chain and E defines the amplitude of 
the synaptic current, which is nonzero during the fir- 
ing of the neighboring cells. Thus, from the point of 
view of the local stability of periodic orbits (at least), 
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a change in the amplitude of synaptic current pulses 
is equivalent to adding some constant current, such as 
a leak current. In other words, the effects of changes 
of the synaptic conductances between neurons (a lo- 
cal property) can be compensated by external currents, 
which could be achieved by a global neuromodulator. 

6. Effects of noise on bifurcations in the model of 
coupled neurons 

The model of coupled neurons (3)considered so far 
does not take into account the noise that is present in 
biological systems as a consequence of fluctuations in 
the ionic currents in the neurons and the synapses. The 
influence of noise on the dynamics of the system is 
particularly strong near critical points (bifurcations), 
where the system is sensitive to small changes in the 
input and the noise can switch the behavior from one 
regime to another. To test the effect of the noise we 
investigated the dynamics of a modified system 

where ~ ( t )  is a zero-mean additive white noise with 
variance a. This model was examined near the bifur- 
cation point corresponding to the transition between 
the regimes L9 and Llo. Qualitatively different behav- 
ior was observed in the transition between regimes in 
the presence of noise compared with the absence of 
noise. Without noise, the system displayed strong hys- 
teresis, as shown in Fig. 5(a) and (b). In presence of 
noise, shown in Fig. 5(c) and (d) the hysteresis region 
was smaller and the behavior of the system showed 
less dependence on the initial conditions. In the pres- 
ence of noise, the fluctuations in the membrane po- 

tential was larger near bifurcation points compared to 
when the system was far from a bifurcation. Near bi- 
furcation points, the system could suddenly "switch" 
between different regimes (Fig. 5(d)). Thus, noise pre- 
vented the appearance of attractors with small basins 
and, therefore, reduced the multistability of the sys- 
tem. 

7. Discussion 

Complex rhythmic behaviors have been observed 
in a wide range of biological systems including cen- 
tral pattern generators [19,27], thalamocortical sys- 
tems [9,12,18,29] and the cerebellum [30]. The focus 
of this paper has been on the qualitative properties of 
bursting neurons and the influence of mutual inhibitory 
coupling on cooperative states. 

Reciprocal inhibition leads to out-of-phase oscilla- 
tion of neighbor neurons in a linear chain of model 
neurons based on bursting neurons in the thalamus. 
The number of spikes in a burst increases as the 
strength of the reciprocal inhibition is increased. The 
model with coupled neurons displayed less chaotic 
behavior than that observed in an isolated model neu- 
ron. We showed that the codimension-1 bifurcations 
lead to the regularization and switching between pe- 
riodic regimes with different numbers of spikes. The 
same phenomenon may occur in other more complex 
systems that display synchronous activity, such as 
spindling in thalamocortical systems [3]. 

Chains of bursting neurons coupled synaptically 
exhibit a new type of organized phenomenon not 
found in models with traditional diffusive coupling. 
Inhibitory coupling between bursting neurons pro- 
duces several types of out-of-phase oscillations. The 
nonlinear synaptic coupling allows limit cycles to 
occur in the coupled model even though single neu- 
rons are situated in their chaotic regime. The coupled 
model, which nonetheless exhibits the same types of 
bifurcation that appear in the isolated cell, also has 
smaller regions of bistability near the saddle-node 
bifurcations for an even number of coupled neurons. 
This does not occur in chains with an odd number of 
neurons. 
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Fig. 5. One-parameter Poincare map as a function of the strength of the inhibitory coupling , E ,  for 2-coupled HR models: (a) without 
noise for increasing values of the coupling; (b) without noise for decreasing values of the strength of the coupling; (c) including 
additive white noise with variance 0.08 in the synaptic strength for increasing values of the inhibition; and (d) with additive white 
noise with variance 0.08 in the synaptic strength, E ,  for decreasing values of the inhibition. 

We calculated the bifurcations for a chain of 2, 4 
and 6 neurons. They were the same as those in an 
isolated bursting neuron, including the same depen- 
dence of the multipliers and the period as a function of 
the control parameter. However, the stability of longer 
chains of coupled neurons needs further investigation. 
It is possible that instabilities will appear, such as the 
modulation instabilities that are typical for extended 
systems 1171. For example, it has been shown that the 
homogeneous solution of two-dimensional network of 
synaptically coupled inhibitory and excitatory neurons 
becomes unstable and spatio-temporal chaos appears 
if the size of the network exceeds some critical value 

P I .  
The results reported here are a starting point for a 

more detailed analysis of the bifurcations in bursting 
systems of coupled inhibitory. 
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