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Computational Imagery 

understand how such hybrid systems can best be 
constructed and applied. 

(c) What can we learn from human cognitive 
models? The topic of mental imagery has lofig been 
studied in areas such as psychology, philosophy, and 
linguistics. Researchers in A1 have much to learn from 
the understanding of how the human information 
processing system reasons with image representations. 

(d) What are other potential domains of application 
for diagrammatic reasoning? Although several ap- 
plication areas have been considered, there are cer- 
tainly other areas that would benefit from the ability to 
incorporate diagrams or images for the purpose of 
problem solving. 

The area of diagrammatic reasoning is relatively 
new in AI. Prior to 1990 there were only a handful of 
papers related to this topic. Although interest and 
activity has greatly increased during the 1990s, there 
are still many questions to be posed and answered in 
this emerging area. 

See also: Concept Learning and Representation: 
Models; Feature Representations in Cognitive Psy- 
chology; Imagery versus Propositional Reasoning; 
Knowledge Representation; Logics for Knowledge 
Representation; Mental Imagery, ,Psychology of; 
Mental Models, Psychology of; Mental Represent- 
ations, Psychology of; Practical Reasoning: Philo- 
sophical Aspects; Propositional Representations in 
Psychology; Reasoning with Mental Models; Visual 
Imagery, Neural Basis of 
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Computational Neuroscience 

The term 'computation' in computational neuro- 
science refers to the way that brains processes in- 
formation. Many different types of physical systems 
can solve computational problems, including slide 
rules and optical analog analyzers as well as digital 
computers, which are analog at the level of transistors 
and must settle into a stable state on each clock cycle. 
What these have in common is an underlying cor- 
respondence between an abstract computational de- 
scription of a problem, an algorithm that can solve it, 
and the states of the physical system that implement it 
(Fig. 1). This is a broader approach to computation 
than one that is based purely on symbol processing 
(Churchland and Sejnowski 1992, Arbib 1995). 

There is an important distinction between general- 
purpose computers, which can be programmed to 
solve many different types of algorithms, and special- 
purpose computers, which are designed to solve only a 
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Algorithmic 

Figrrve 1 
Levels of analysis. Marr (1982) advocated a top-down 
approach, starting with the computational level and 
proceeding down to the implementation level. The two- 
way arrows indicate that constraints between levels can 
be used to gain insights in both directions. Research in 
computational neuroscience often starts at the 
implementation level and proceeds up to the 
computational level 

limited range of problems. Most neural systems are 
specialized for particular tasks; an example is the 
retina, which is dedicated to visual transduction and 
image processing. As a consequence of the close 
coupling between structure and function, the anatomy 
and physiology of a brain area can provide important 
clues to the algorithms that it implements and its 
computational function (Fig. 1); in contrast, the 
hardware of a general-purpose computer may not 
reveal its function, which also depends on software. 

Another major difference between brains and gen- 
eral-purpose digital computers is that computers are 
hardwired, but the connectivity between neurons and 
their properties is shaped by the environment during 
development and remains plastic even in adulthood. 
Thus, as the brain processes information, it changes its 
own structure in response to the information that is 
being processed. Adaptation and learning are im- 
portant mechanisms that allow brains to respond 
flexibly as the world changes-on a wide range of time 
scales, from milliseconds to years. The flexibility of the 
brain has survival advantage when the environment is 
nonstationary, and the evolution of some cognitive 

skills may depend deeply on genetic processes that 
have extended the time scales for brain plasticity. 

Brains are complex, nonlinear dynamical systems 
with feedback loops, and brain models provide in- 
tuition about the possible behaviors of such systems. 
The predictions of a model make explicit the conse- 
quences of the underlying assumptions, and com- 
parison with experimental results can lead to new 
insights and discoveries. Emergent properties of neural 
systems, such as oscillatory behaviors, depend on both 
the intrinsic properties of the neurons and the pattern 
of connectivity between them. For example, the large- 
scale coherent brain rhythms that accompany different 
states of alertness and sleep arise from intrinsic 
properties of thalamic and cortical neurons that are 
reciprocally connected (Destexhe and Sejnowski 
2001). 

1. Models at Dzfferent Levels of Detail 

1.1 Realistic Models 

Perhaps the most successful model at the level of the 
neuron has been the classic Hodgkin-Huxley model of 
the action potential in the giant axon of the squid 
(Koch and Segev 1998). Data were first collected 
under a variety of conditions, and a model was later 
constructed to integrate the data into a unified 
framework. This type of model requires that most of 
the variables in the model have been measured 
experimentally, and only a few unknown parameters 
need to be fitted to the data. Detailed models can be 
used to distinguish between different explanations of 
the data. In the classic model of a neuron, information 
flows from the dendrites, where synaptic signals are 
integrated, to the soma of the neuron, where action 
potentials are initiated and carried to other neurons 
through long axons. In these models, the dendrites are 
passive cables, but recently, voltage-dependent so- 
dium, calcium, and potassium channels have been 
observed in the dendrites of cortical neurons, which 
greatly increase the complexity of synaptic integration 
(Stuart et al. 1999). Experiments and models have 
shown that these active currents can carry information 
in a retrograde direction from the cell body back to the 
distal synapses tree. Thus, it is possible for spikes in 
the soma to affect synaptic plasticity through the 
mechanisms discussed in Sect. 2. 

Realistic models with several thousand cortical 
neurons can be explored on the current generation of 
workstation. The first model for the orientation 
specificity of neurons in the visual cortex was the 
'feedforward' model proposed by Hubel and Wiesel, 
which assumed that the orientation preference of 
cortical cells was determined primarily by converging 
inputs from thalamic relay neurons. Although there is 
solid experimental evidence for this model, local 
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cortical circuits have been shown to be important in 
amplifying weak signals and suppressing noise, as well 
as performing gain control to extend the dynamic 
range. These models are governed by the type of 
attractor dynamics that was analyzed by John Hop- 
field (1982), who provided a conceptual framework for 
the dynamics of feedback networks. 

Although the spike train of cortical neurons is 
highly irregular, and is typically treated statistically, 
information may be contained in the timing of the 
spikes in addition to the average firing rate. This has 
already been established for a variety of sensory 
systems in invertebrates and peripheral sensory 
systems in mammals (Rieke et al. 1996), but whether 
spike timing carries information in cortical neurons is 
an open research issue. In addition to representing 
information, spike timing could also be used to control 
synaptic plasticity through Hebbian mechanisms for 
synaptic plasticity, as discussed in Sect. 2. 

1.2 Signal Processing Models 

Other types of models have been used to analyze 
experimental data in order to determine whether they 
are consistent with a particular computational as- 
sumption. For example, a 'vector averaging' technique 
has been used to compute the direction of arm motion 
from the responses of cortical neurons (Georgopoulos 
et al. 1986), and signal detection theory was used to 
analyze the information from cortical neurons re- 
sponding to visual motion stimuli (Movshon and 
Newsome 1996). Bayesian methods can effectively 
decode the position of a rat in a maze from place cell 
recorded in the hippocampus (Zhang et al. 1998). In 
these examples, the computational model was used to 
explore the information in the data but was not meant 
to be a model for the actual cortical mechanisms. 
Nonetheless, these models have been highly influential 
and have provided new ideas for how populations of 
neurons may represent sensory information and motor 
commands. 

Neural network or 'connectionist' models that 
simplify the intrinsic properties of neurons can be 
helpful in understanding the computational conse- 
quences of information contained in large populations 
of neurons. An example of this approach is a recent 
model of parietal cortex based on the response 
properties of cortical neurons (Pouget and Sejnowski 
2001). The parietal cortex is involved in representing 
the spatial location of objects in the environment and 
computing transformations from sensory to motor 
coordinates. The model examined the issue of which 
reference frames are used in the cortex for performing 
these transformations. The model predicted the out- 
comes of experiments performed on patients with 
spatial neglect following lesions of the parietal cortex. 

Cognitive functions such as attention have also been 
modeled. Francis Crick (1994) proposed that the relay 
cells in the thalamus may be involved in attention, and 

has provided an explanation for how this could be 
accomplished based on the anatomy of the thalamus. 
Models of competition between neurons in cortical 
circuits can explain many properties of single cortical 
neurons in awake, behaving monkeys during attention 
tasks (Reynolds et al. 1999). 

Finally, small neural systems have been analyzed 
with dynamical systems theory (Harris-Warrick et al. 
1995). This approach is feasible when the numbers of 
parameters and variables are small. Most models of 
neural systems involve a large number of variables, 
such as membrane potentials, firing rates, and concen- 
trations of ions, with an even greater number of 
unknown parameters such as synaptic strengths, rate 
constants, and ionic conductances. Where the number 
of neurons and parameters is very large, techniques 
from statistical physics become applicable in predict- 
ing the average behavior of large systems (Van 
Vreeswijk and Sompolinsky 1998). There is a midrange 
of system sizes where neither type of limiting analysis 
is possible, but where simulations can be performed 
(Bower and Beeman 1998). One danger of relying 
solely on computer simulations is that they may be as 
complex and difficult to interpret as the biological 
system itself. 

2. Learning and Memory 

One of the goals of computational neuroscience is to 
understand how long-term memories are formed 
through experience and learning. There is increasing 
experimental evidence that the strengths of inter- 
actions between neurons can be altered by activity, 
called synaptic plasticity. For example, high-frequency 
trains of stimuli at synapses in the hippocampus induce 
a form of long-term potentiation (LTP) that can last 
for days (Bliss and Lomo 1973). Moreover, these 
synapses require simultaneous presynaptic activity 
and postsynaptic depolarization (Kelso et al. 1986), as 
suggested by Hebb (1949). Models of associative 
memory that incorporate Hebbian synaptic plasticity 
have been widelv exwlored (Anderson and Hinton . - 
1981). 

Hebbian synaptic plasticity can also be used to form 
maps and has been used to model the early de- 
velopment of the projection from the thalamus to the 
visual cortex. In particular, these models can explain 
why inputs from the right and left eyes form alter- 
nating stripes in primary visual cortex of cats and 
monkeys, called ocular dominance columns (Miller et 
al. 1989). Specific mappings arise in the cortex because 
temporal contiguity in axonal firing is translated into 
spatial contiguity of synaptic contacts. 

The change in the strength of synapses in the 
hippocampus and neocortex depends on the relative 
timing of spikes in the presynaptic neuron and the 
postsynaptic neuron. Reliable LTP occurs when the 
presynaptic stimulus precedes the postsynaptic spike, 
but there is long-term depression (LTD) when the 
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presynaptic stimulus immediately follows the post- 
synaptic spike (Markram et al. 1997, Bi and Poo 
1998). This temporal asymmetry in synaptic plasticity 
solves the problem of balancing LTD and LTP, since 
chance coincidences should occur about equally with 
positive and negative relative time delays. When 
sequences of inputs are repeated in a network of 
neurons with recurrent excitatory connections, tem- 
porally asymmetric synaptic plasticity will learn the 
sequence and the pattern of activity in the network will 
tend to predict future inputs. There is evidence for this 
in the hippocampus where place cells representing 
nearby locations in a maze may be linked together 
(Blum and Abbott 1996), and in visual cortex where 
simulations of cortical neurons can become direc- 
tionally selective when exposed to moving visual 
stimuli (Rao and Sejnowski 2000). 

The temporally asymmetric Hebbian learning rule 
can be used to implement the temporal difference 
learning algorithm in reinforcement learning and 
classical conditioning (Montague and Sejnowski 1994, 
Sutton and Barto 1998, Rao and Sejnowski 2000). The 
unconditioned stimulus in a classical conditioning 
experiment must occur before the reward for the 
stimulus-reward association to occur. This is reflected 
in the temporal difference learning algorithm by a 
postsynaptic term that depends on the time derivative 
of the postsynaptic activity level. The goal is for the 
synaptic input to predict future reward: if the reward is 
greater than predicted the postsynaptic neuron is 
depolarized and the synapse strengthens, but if the 
reward is less than predicted, the postsynaptic neuron 
is hyperpolarized and the synapse decreases in 
strength. There is evidence that in primates the 
transient output from dopamine neurons in the ventral 
tegmental area carries information about the reward 
predicted from a sensory stimulus (Schultz et al. 1997), 
and in bees, an octopaminergic neuron has a similar 
role (Hammer and Menzel 1995). 

The temporal window for classical conditioning is 
several seconds-much longer than the window for 
LTP/LTD observed at  cortical and hippocampal 
synapses. A circuit of neurons in the basal ganglia and 
frontal cortex may be needed to extend the com- 
putation of temporal differences to these long time 
intervals (Berns and Sejnowski 1998). It is surprising 
to find the same learning algorithm in different types 
of learning systems in different parts of the brain. This 
suggests that the temporal order of input stimuli is a 
useful source of information about causal dependence 
in many different learning contexts and over a range of 
time scales. 

3. Future Directions 

Almost all of the proteins that make up synapses are 
now known, and the sequencing of the human genome 

will make it possible to complete that list within the 
next few years. Coupled with high-voltage electron 
microscopy and methods for labeling these proteins, it 
should be possible to develop a reasonably complete 
model for the neuromuscular junction and central 
synapses in a few more years. This will allow us to 
understand the synapses as a molecular machine and 
to understand the mechanisms that are involved in 
synaptic plasticity (building on a large existing body of 
research, for which the Nobel Prize in Medicine was 
given to Arvid Carlsson, Paul Greengard and Eric 
Kandel in 2000). It is highly likely that advances in 
modeling and computational theory at this level will 
have direct impact on the pharmaceutical industry 
through the design of new drugs and new approaches 
to mental disorders. 

Progress in this area has been slower because ex- 
perimental technique for recording from many 
neurons simultaneously still lags behind. However, the 
advent of large electrode arrays and optical recording 
techniques will make rapid progress possible so before 
long we should have a reasonable understanding of 
neural circuits in simple creatures and some parts of 
the vertebrate brain. Computer models are being used 
to understand how the intrinsic properties of neurons 
and the synapses that join them produce complex 
spatio-temporal patterns of activity and how these 
networks are used to encode, store and retrieve 
information in large neural systems such as cortical 
columns. Advances at this level could lead to a new 
generation of pattern recognition systems and sen- 
sorimotor control systems for robotic devices. 

The major breakthrough that has occurred recently in 
human brain imaging, primarily with the development 
of functional magnetic resonance imaging, is allowing 
rapid progress to be made in localizing cognitive 
functions within the human brain. Magnetic resonance 
technology is still a t  an early stage of development 
and new approaches, such as magnetic resonance 
spectroscopy, should make it possible to observe 
biochemical reactions occurring within the brain. 
However, until such time as resolution of these new 
techniques is improved, or they can be integrated with 
older techniques such as electroencephalography 
(EEG) and magnetoencephalography (MEG), it will 
not be possible to uncover the mechanisms that 
underlie the activity that is observed with functional 
imaging. It may take decades before techniques mature 
to the point where we can begin to understand the 
large-scale organization of primate brains. However, 
even before this, significant progress will be made 
using invasive techniques in nonhuman primates and 
other mammals. Understanding of brains at this level 
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will provide the ultimate insights into major philo- 
sophical questions about consciousness and auto- 
nomy (Crick 1994). 

3.4 Technology for Brain Modeling 

Do new properties emerge as the number of neurons in 
a neural system becomes large? This question can be 
explored with large simulations of millions of neurons. 
Parallel computers have become available that permit 
massively parallel simulations, but the difficulty of 
programming these computers has limited their use- 
fulness. An approach to massively parallel models 
introduced by Carver Mead is based on subthreshold 
CMOS VLSI (Very Large Scale Integrated) circuits 
with components that directly mimic the analog 
computational operations in neurons. Several large 
silicon chips have been built that mimic the visual 
processing found in retinas. Analog VLSI cochleas 
have also been built that can analyze sound in real 
time. Analog VLSI chips have been built that mimic 
the detailed biophysical properties of neurons, in- 
cluding dendritic processing and synaptic conduc- 
tances (Douglas et al. 1995). These chips use analog 
voltages and currents to represent the signals, and are 
extremely efficient in their use of power compared to 
digital VLSI chips. A new branch of engineering called 
neuromorphic engineering has arisen to exploit this 
technology. 

4.  Conclusions 

Although brain models are now routinely used as tools 
for interpreting data and generating hypotheses, we 
are still a long way from coming up with explanatory 
theories of brain function. For example, despite the 
relatively stereotyped anatomical structure of the 
cerebellum, we still do not understand its computa- 
tional functions. Recent evidence from functional 
imaging of the cerebellum suggests that the cerebellum 
is involved in higher cognitive functions and is not just 
a motor controller. Modeling studies may help in 
exploring these competing hypotheses. This has al- 
ready occurred in the oculomotor system, which has a 
long tradition of using control theory models to guide 
experimental studies. 

Digital computers have been increasing in power 
exponentially from around 1950 when the first 
machines, built from vacuum tubes and mercury delay 
lines, were introduced. The number of operations per 
second roughly doubles every three years. This vast 
increase in computer power, or, conversely, decrease 
in the cost of computing and data storage, has had a 
major impact on the study of the brain and on the 
development of brain models and theories. For ex- 
ample, functional magnetic resonance imaging, which 
has made it possible to study human brain activity 

non-invasively, would not have been feasible without 
fast digital co,mputers that direct the pulse sequences, 
data acquisition and data analysis. The increasing 
power of computers is transforming our ability to 
analyze complex neural systems at many levels of 
investigation and will have far-reaching consequences 
on society. 

It is very important to note that, at this stage in our 
understanding of the brain, a model should only be 
considered a provisional framework for organizing 
thinking. Many partial models need to be explored at 
many different levels of investigation, each model 
focusing on a different scientific question. As compu- 
ters become faster, and as software tools become more 
flexible, computational models should proliferate. 
Close collaborations between modelers and experi- 
mentalists, facilitated by the internet, should lead to 
an increasingly better understanding of the brain as a 
computational system. 

See also: Artificial Neural Networks: Neurocom- 
putation; Behavioral Neuroscience; Cognitive Neuro- 
science; High Performance Computing; Information 
Processing Architectures: Fundamental Issues; Neural 
Networks and Related Statistical Latent Variable 
Models 
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Computational Psycholinguistics 

Psycholinguistics is the scientific discipline that studies 
how people acquire a language and how they com- 
prehend and produce this language. The increasing 

complexity of the models of human language pro- 
cessing which have been evolved in this discipline 
makes the development and evaluation of computer 
implemented versions of these models more and more 
important to understand these models and to derive 
predictions from them. Computational psycho- 
linguistics is the branch of psycholinguistics that 
develops and uses computational models of language 
processing to evaluate existing models with respect to 
consistency and adequacy as well as to generate new 
hypotheses. 

I .  Cognitive Modeling and Computational 
Psycholinguistics 

Not every computer model mimicking linguistic 
behavior can be declared as being psychologically 
relevant. For example, the ELIZA question-answering 
system (Weizenbaum 1966) is able to imitate the role 
of a therapist very well, although the system's behavior 
is based solely on simple pattern matching mechanisms 
that do not say anything about the linguistic and non- 
linguistic processes underlying a dialogue. In order to 
be a psycholinguistically relevant computer model, 
the model must simulate a specific human cognitive 
function. As a prerequisite for the construction of such 
a model, formal analyses of the linguistic domain and 
empirical studies are required to determine the com- 
plexity of that domain and of the parameter values of 
the respective cognitive function to be modeled. 

This research methodology corresponds to the 
typical methodology in cognitive modeling (see Cog- 
nitive Modeling: Research Logic in Cognitive Science). 
In fact, there is only one difference between cognitive 
modeling and computational psycholinguistics: While 
cognitive modeling deals with all aspects of human 
cognition, computational psycholinguistics is confined 
to architectures and mechanisms for human language 
processing. 

1.1 Computer Models in Psycholinguistics 

In essence, psycholinguistics addresses the questions 
of how speakers put pre-linguistic concepts into words, 
and then combine these words to larger units in order 
to produce the oral or written output, and how a 
listener parses the auditory or visual input into 
meaningful units and arrives at an understanding of 
the input. 

Although psycholinguistics as part of the inter- 
disciplinary field of the cognitive sciences shares the 
view that cognition should essentially be regarded as 
computation, the research methodology in psycho- 
linguistics is primarily oriented at experimental studies 
with the computer as a tool for the selection and 
presentation of appropriate stimulus material, and the 
exact measurements of reaction times, etc. Computer 
modeling itself does not play a major role in model 
development. Surveys of psycholinguistic research 

Copyright 0 2001 Elscvicr Scicncc Ltd. All rights reserved. 
Intcrnational Encyclopedia of thc Social & Behavioral Sciences ISBN: 0-08-043076-7 




