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450 Computational neuroscience

Table 1. Major structural-biochemical causes of stupor and coma

Supratentorial mass lesions (secondarily producing deep
diencephalic and/or upper brainstem dysfunction)

Cerebral hemorrhage

Large cerebral infarction
Traumatic brain contusion-edema
Subdural hematoma

Epidural hematoma

Brain tumor

Brain abscess (rare)

Subtentorial lesions (compressing or destroying ascending activating
systems)

Pontine or cerebellar hemorrhage
Rostral pontine tegmental brain stem infarction
Brain stem or cerebellar expanding tumor
Cerebellar abscess compressing brain stem
Metabolic and diffuse lesions
Global cerebral anoxia or ischemia (e.g., cardiac arrest)
Hypoglycemia
Severe nutritional deficiency (e.g., advanced Wernicke’s disease)
Endogenous organ failure or deficiency (e.g., lung, liver, kidney)
Exogenous poison (e.g., alcohol, sedatives, oplates)
Infections
Meningitis
Encephalitis

Tonic and electrolyte disorders (e.g., hyponatremia, water
intoxication)

Status epilepticus

Concussion and postictal states

jury do better than those older than 30-40 years of age. By
contrast, even in children, severe anoxic coma often leads to
a permanently crippled existence. Limited degrees of struc-
tural damage such as occur with traumatic concussion can
be followed relatively promptly by a complete or near com-
plete return of brain function. More severe injury, especially
when it produces structural damage to the cerebrum or criti-
cal brain stem regions usually results in long lasting cognitive
impairment, the most severe example of which is the cogni-
tively and emotionally empty condition called the vegetative
state.

Computational neuroscience

Terrence J. Sejnowski

Computational neuroscience is a relatively recent approach to
understanding how nervous systems represent, process, store,
and act upon information that is latent in the environment or
is expressed genetically through developmental mechanisms.
Models of neural systems can be used to interpret experi-
mental data in new ways, to confirm and extend existing hy-

2. Etiology and management

Coma as a medical problem implies the imminent threat of brain
failure with widespread loss of cerebral activity, upper brain
stem function, or both. Table 1 lists the major diseases or cate-
gories that can produce such severe impairments. Supratentorial
mass lesions per se generally impair consciousness little or not
at all unless they expand and distort the brain sufficiently to
compress the diencephalon latero-caudally, thereby producing
transtentorial distortion or herniation.- As one would anticipate,
rapidly enlarging lesions are more dangerous in this respect
than are relatively slowly changing ones. Upper brain stem or
lower diencephalic abnormalities cause coma when the lesions
directly damage the central ascending forebrain activating sys-
tems. Metabolic disorders can affect both the supra- and sub-
tentorial mechanisms that normally generate conscious behav-
ior. Accordingly, they generally produce mutifocal symptoms
and signs, reflecting dysfunction at several anatomic levels of
the brain. When briefly lasting, they may result in no sustained
cerebral insufficiencies. Metabolic suppression of the brain by
drugs or surgical anesthesia, for example, leaves in its wake no
discoverable ill effects.

Most brain dysfunction sufficient to produce coma implies
a poor prognosis; only therapeutic anesthesia or overdose
with sedatives or alcohol contradict the rule. Among large
series of patients with nontraumatic coma lasting more than
12 hours or so, only about 15% completely recovered their
physical and intellectual functions. Likewise, among patients
with severe, sustained coma from head injury, almost half will
die and as many as 25% of the survivors will be severely
incapacitated. Patients with metabolic coma or young persons
briefly unconscious from head trauma generally do best, while
those showing signs of severe primary or secondary brain stem
damage fare worse, no matter what the cause.

Patients in coma are best treated acutely in special care units
where they can receive close attention to their often precarious
autonomic functions and can obtain specific therapy directed
at their underlying neurological disease. Skilled respiratory
and cardiovascular support provide the necessary core of
management with specific measures directed at the particular
disease that threatens to destroy the brain.

Further reading

Plum F. (1991): Coma and related global disturbances of the human
conscious state. In: Cerebral Cortex, Vol. 9, Peters, A, ed.New York:
Plenum

Plum F, Posner IB (1997): The Diagnosis of Stupor and Coma. 4th edn.
Philadelphia: FA Davis

See also Persistent vegetative state; Activation, arousal, alertness
and attention; Brain death; Brain trauma; Hypoxia; Brain injury,
functional recovery after

potheses, and to generate new hypotheses for the function
of neural systems. These hypotheses provide links between
levels of description, from the molecular to systems levels.
The ultimate aim of computational neuroscience is to pro-
vide linking principles from neural mechanisms to behav-
ior.
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Table 1. Resources for computational neuroscience

Annual Summer Schools and Conferences

Summer Course on Methods in Computational Neuroscience; Woods Hole MA (August)

Crete Course on Computational Neuroscience; Crete, Greece (September)

Cold Spring Harbor Laboratories Summer Course on Computational Neuroscience: Vision; Cold Spring Harbor, New York (July)

Neural Information Processing Systems Conference; Denver Colorado (November)

Computation and Neural Systems Conference, Alternates between East Coast and West Coast (July)

Selected Journals

Journal of Computational Neuroscience (Kluwer Academic Publishers)

Network: Computation and Neural Systems (IOP Press)
Neural Computation (MIT Press)

Simulation Programs

MCell (Thomas Bartol and Joel Stiles): Monte Carlo models of subcellular chemical signaling

GENESIS (James Bower and Matthew Wilson): Realistic compartmental models of neurons and networks

NEURON (Michael Hines and John Moore): Realistic compartmental models of neurons and networks

NSL (Michael Arbib and Alfredo Weitzenfeld): Neural Simulation Language for large-scale models of neural systems
PDP-++ (Randall O’Reilly and James McClelland): Parallel Distributed Processing models based on abstract neural networks

Computational neuroscience has made progress in achieving
these aims by using techniques from computer science and
applied mathematics to simulate and analyze computational
models of neurons and neural systems at many levels of
investigation. Digital computers have continued to increase in
speed, making it possible to approach more complex neural
systems. The number of investigators using computational
tools is expanding and a variety of new journals, summer
schools and scientific conferences have proliferated that focus
on computational neuroscience (Table 1). A comprehensive
handbook on brain theory has appeared (Arbib, 1995). In this
article, only a few of the major issues and advances in the field
can be summarized.

1. What is computation?

Many different types of physical systems can solve computa-
tional problems, including slide rules and optical Fourier ana-
lyzers as well as digital computers. What these have in common
is an underlying correspondence between an abstract mathemat-
ical algorithm and the states of the physical system (Churchland
and Sejnowski, 1992). This approach to computation is broad
enough to include neural systems. An important distinction can
be made between general purpose computers, which can be pro-
grammed to solve many different types of algorithms, and spe-
cial purpose computers, which are designed to solve only a lim-
ited range of problems. Most neural systems are specialized for
particular tasks, such as the retina which is dedicated to visual
transduction and image processing. Because of the close cou-
pling between structure and function in a dedicated system, the
anatomy and physiology of a brain region provide important
clues to its function. Unlike a digital computer, the connectivity
between neurons and their properties are shaped by the envi-
ronment during development and remain plastic even in adult-
hood. Thus, as the brain processes information, it changes its
own structure in response to the information. This plasticity is
important in allowing brains to respond flexibly to a changing
world through adaptation and learning.

2. Brain modeling

Brain models used as an adjunct to experimental techniques
have several advantages: (1) Models provide intuition about
the possible behaviors of complex, dynamical brain systems,
especially when they are nonlinear and have feedback loops;
(2) the predictions of a model make explicit the consequences of
the underlying assumptions, and comparison with experimental
results can lead to new insights and discoveries; and (3) the
results of difficult experiments can be simulated with a model,
such as reversible lesions of selected channels or neurons,
to optimize the design of the experiment for distinguishing
between competing explanations.

Eve Marder has made an interesting distinction between
three different types of brain models. The first type, called
an interpretive model, is used to analyze experimental data
in order to determine whether they are consistent with a
particular computational assumption. For example, Apostolos
Georgopoulos has used a “vector averaging” technique to
compute the direction of arm motion from the responses of
a population of cortical neurons, and William Newsome and
his colleagues have used signal detection theory to analyze
the information from single cortical neurons responding to
visual motion stimuli. In these examples, the computational
model was used to explore the information in the data but was
not meant to be a model for the actual cortical mechanisms.
Nonetheless, these models were highly influential and have
provided new ideas for how the cortex may represent sensory
information and motor commands. These models in turn have
affected experimental design, which have then led to improved
models.

A second type of model, called a confirmatory ~model,
has been used extensively to test whether a set of data can
account for the phenomena being studied. In many biophysical
experiments, such as the classic Hodgkin-Huxley studies of the
squid action potential, sets of data are collected under a variety
of conditions, and a model is later constructed to integrate the
data into a unified framework. This type of model is most
effective when most of the variables in the model have been
measured experimentally and only a few unknown parameters
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need to be fit to the experimental data. One danger with this
approach is that even if the model fits the data, the resulting
model may not be unique. However, automated techniques have
been developed for systematically exploring large parameter
spaces to determine all combinations of parameters that fit the
data (Koch and Segev, 1997). As the number of experiments
increases, the number of possible solutions that fit all the data
should converge to a unique set.

Finally, a third type of model starts with a general principle
and produces a speculative model that implements the principle
within known biological constraints. These models can be
quite fruitful in helping to motivate experiments that might not
have been otherwise undertaken. An example of this approach
is the model of coupled nonlinear oscillators analyzed by
Nancy Kopell and others, which has led to new experiments
on fictive swimming in the lamprey spinal cord (Churchland
and Sejnowski, 1992). One of the strengths of this type of
model is that it can be used to identify the critical variables
that determine the qualitative behavior of a system. One
corresponding weaknesses is that because much of the fine
detail is often absent, it may not be possible to make detailed
comparisons with data.

Dynamical systems theory has been used to analyze dynam-
ical models of small neural systems. Dynamical systems analy-
sis is most fruitful when the numbers of parameters and vari-
ables are small. Most models of neural networks involve a large
number of variables, such as membrane potentials, firing rates,
and concentrations of ions, with an even greater number of un-
known parameters such as synaptic strengths, time constants,
and conductances. In the limit that the number of neurons and
parameters is very large, techniques from physics become ap-
plicable in predicting the average behavior of large networks.
There is a midrange of systems where neither type of limiting
analysis is possible, but where simulations can be performed.
One danger of relying solely on computer simulations is that
the they may be as complex and difficult to interpret as the bio-
logical system itself.

3. Recent brain models

At the cellular and molecular levels, significant advances have
taken place in modeling specific neurons and synapses based
on biophysical measurements of ionic mechanisms. Markov
models that are used to model ionic channels can be applied to
every aspect of synaptic signaling, including transmitter release
and the intracellular second-messenger systems that modulate
synaptic transmission (Koch and Segev, 1997). The original
Hodgkin-Huxley models for the fast sodium and delayed
rectifier potassium channels are special cases of a Markov
model, as are the detailed biophysical models of receptor
kinetics.

The pioneering work of Wilfrid Rall on the electrical prop-
erties of dendrites was based on the analysis of simplified den-
dritic geometries (Segev et al., 1995). It is now possible to sim-
ulate multicompartment models of dendrites from the geome-
tries of reconstructed neurons. Voltage-dependent sodium and
calcium channels have been observed in the dendrites of corti-
cal neurons, which greatly increases the complexity of synaptic
integration. The experimental finding that active currents can
carry information in a retrograde direction from the cell body
up to the distal synapses also has computational significance
for Hebbian forms of synaptic plasticity. Another intriguing ob-
servation made with modeling techniques is that the wide va-
riety of spiking patterns in cortical neurons can be reproduced
from the same distribution of ionic channels by varying only the
geometry of the dendritic tree (Koch and Segev, 1997).

Realistic models with several thousand cortical neurons can
be explored on the current generation of workstation, which al-

lows the dynamics of cortical columns can be explored in de-
tail. The first model for the orientation specificity of neurons
in the visual cortex was the feedforward model proposed by
Hubel and Wiesel, which assumed that the orientation prefer-
ence of cortical cells was determined primarily by converging
inputs from thalamic relay neurons. Experimental evidence now
favors this model over other models in which the orientation
specificity was determined primarily by local cortical circuits.
Simulations of orientation columns have shown that the intrin-
sic circuits in the cortex could be used to amplify weak signals
and suppress noise as well as to perform gain control to ex-
tend its dynamic range. This is an important step forward in
understanding the function of visual cortex. Abstract models,
such as Hopfield networks, have also been helpful in providing
a conceptual framework for cortical dynamics (Churchland and
Sejnowski, 1992).

Although thalamic neurons that project to the cortex are
called relay cells, they almost surely have additional functions
since the visual cortex makes massive feedback projections
back to them. As an example of a speculative model that has
led to a new computational hypothesis for the thalamus, Francis
Crick has proposed that the relay cells in the thalamus may be
involved in visual attention, and has provided an explanation
for how this could be accomplished based on the anatomy of
the thalamus. This searchlight model of attention and other
hypotheses for the function of the thalamus are being explored
with computational models and new experimental techniques
are being used to test these models. The thalamus is also highly
active during sleep. Detailed models of thalamic networks can
reproduce the low frequency oscillations observed during sleep
states, when feedback connections to the thalamus affect the
spatial organization of the rhythms (Steriade et al., 1993) (see
animation ! — on CD-ROM version).

Although the spike trains of cortical neurons are highly irreg-
ular, information may be conveyed in the timing of the spikes
in addition to their average firing rate. This has already been es-
tablished for a variety of sensory systems in invertebrates and
peripheral sensory systems in mammals (Rieke et al., 1997),
but whether spike timing carries information in cortical neurons
is an open research issue. Brain theorists and experimentalists
have engaged in an active dialogue that has enhanced both the
interpretation of the data and the theoretical predictions of the
models (Abeles, 1991).

4. Technology for brain modeling

New technology is needed to scale up simulations from thou-
sands of neurons to millions of neurons. Parallel computers
have become available which permit massively-parallel simu-
lations, but the difficulty of programming these computers has
limited their usefulness. A new approach to massively-parallel
models has been introduced by Carver Mead, who builds sub-
threshold ¢cMOS VLST (Very Large Scale Integrated) circuits
with components that directly mimic the analog computational
operations in the brain. Several large silicon chips have been

I'The animation shows spatial patterns of burst discharges in a
model of thalamic oscillations. 50 thalamic relay cells and 50 reticular
nucleus cells with reciprocal connections and organized in a one-
dimensional array were simulated using potential for each neuron was
coded using a color scale ranging in 10 steps from —90 mV (blue)
to —40 mV (yellow). The ionic channels in these neurons produce
bursts of fast sodium action potentials. The activity consisted in a series
of distinct clusters of activity propagating in the same direction. In
these simulations, bicuculline-induced oscillations were simulated by
blocking the fast GABA, synapses in the network, leaving the slower
GABAp synapses. For more details about these simulations and the
experimental observations (see Destexhe et al., 1996).
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built which model the visual processing found in retinas. Ana-
log VLSI cochleas have also been built that can analyze sound
in real time. These chips use analog voltages and currents to
represent the signals, and are extremely efficient in their use of
power compared to digital VLSI chips. A new branch of engi-
neering called neuromorphic engineering has arisen to exploit
this technology.

Recently, Misha Mahowald and Rodney Douglas designed
analog VLSI chips that mimic the detailed biophysical prop-
erties of neurons, including dendritic processing and synap-
tic conductances. This has opened the possibility of building a
“silicon cortex” (Douglas et al., 1995). Protocols are being de-
signed for long-distance communication between analog VLSI
chips that use the equivalent of all-or-none spikes, the same way
that long-distance communication between neurons is accom-
plished. Many of the design issues that govern the evolution of
biological systems also arise in these neuromorphic systems,
such as the trade-off in cost between short-range connections
and expensive long-range communication. Computational mod-
els that quantify this trade-off and apply a minimization proce-
dure can predict the overall organization of topographical maps
and columnar organization of the cortex.

5. Conclusions

Although brain models are becoming increasingly accepted
into neuroscience as tools for interpreting data and generating
hypotheses, we are still a long way from having explanatory
theories of brain function. For example, despite the relatively
stereotyped anatomical structure of the cerebellum, we still do
not understand its computational functions. Recent evidence
from functional imaging of the cerebellum suggests that the
cerebellum is involved in higher cognitive functions and is not
just a motor controller. Modeling studies may help in exploring
these competing hypotheses. This has already occurred in the
oculomotor system, which has a long tradition of using control
theory models to guide experimental studies.

At this stage in our understanding of the brain, a model
should only be considered a provisional framework for orga-
nizing thinking. Many partial models need to be explored at
many different levels of investigation, each model focusing on
a different scientific question. As computers become faster, and

Computer and brain
Michael A. Arbib

The question “Is the brain a computer?” is the modern version
of the age-old question “Is man a machine?” (see Appendix A)
which has played a large role in Western philosophy since
Descartes held that the beasts were automata but that human be-
ings had in addition a soul which communicated with the body-
automaton via the pineal gland. Today’s dualist may argue that
the pineal gland has been supplanted by the supplementary mo-
tor area, but present-day monism is driven by analogies between
brain and computer. The current concern with the problem may
be seen as an outgrowth of the rise of cybernetics (see Appen-
dix B) in the 1940s, spurred by the development of programmed
electronic computers and of sophisticated servomechanisms. In
his Cybernetics, or Control and Communication in the Animal
and the Machine, Norbert Wiener (1948) related the cybernetic
metaphor to earlier metaphors, such as the comparison of the

as software tools become more flexible, computational models
should proliferate. Michael Arbib and his colleagues have de-
veloped an integrated system called Brain Models on the Web
(BMW) that allows experimenters to access a variety of models
and modelers to access experimental data over the World Wide
Web. Close collaborations between modelers and experimental-
ists can be facilitated by the internet in ways that we are just
beginning to appreciate.
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body to a steam engine which eventually gave rise to the sci-
ence of physiology. The study of physiology did not so much
reduce the body to extant machines as develop the vocabulary
of energy flow and balance in machines to address a wide range
of bodily phenomena. A similar transition is occurring with re-
spect to brain and computer.

In the early days of cybernetics, dominant brain-machine
analogies included the study of feedback in control of move-
ment, and the logical behavior of automata composed of nets
of neuron-like elements (McCulloch and Pitts, 1943). By the
late 1950s, however, the interdisciplinary study of animals and
machines began to give ground to specialized subfields. Work-
ers in automata theory proved theorems about Turing machines
or formal networks with little regard for psychological or neu-
rophysiological validity; workers in artificial intelligence (AI)
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developed programs to play chess or checkers, to prove theo-
rems or to solve word problems, with few constrained by psy-
chological data and almost none by data on the brain. In re-
cent years, workers in Al have joined forces with linguists and
cognitive psychologists to form a new interdisciplinary group-
ing, connectionism (see Appendix F), in which the emphasis
shifts from brain—machine comparisons to mind-machine com-
parisons, seeking to explain human symbolic behavior in terms
of mental operations implemented on abstract neural networks
whose neurons have no necessary relation to identified biolog-
ical neurons. By contrast, computational neuroscience seeks to
benefit from the insights of neural network modeling without
losing concern for the data of neuroscience. Here the neurons,
or other structures of greater or lesser resolution, are directly
related to structures observable in living brains. To understand
this approach, we need the notion of “simulation” and the dis-
tinction of “top-down” from “bottom-up.”

A simulation is something which presents the external ap-
pearance of something else. In computer science, a simulation
is more particularly a computer program which can generate a
numerical or symbolic representation of something else. Thus,
in compartmental modeling (see Appendix D), a computer can
simulate a single biological neuron when equipped with a pro-
gram for solving a suitably parameterized family of generalized
Hodgkin—Huxley equations, with one set of equations to de-
scribe each compartment (i.e., a region of the cell of roughly
uniform electrical activity). But no one would claim that a com-
puter so programmed is a neuron. A computer programmed
with Newton’s laws can simulate movement but not exhibit it.
However, a robot (see Appendix E) — a computer equipped, say,
with TV cameras for eyes and with mechanical limbs — not only
simulates movement, it actually moves. It is still a question of
heated debate as to whether an Al system which can take a story
and questions about it as input and deliver “intelligent” answers
as output is really intelligent or merely simulates intelligence
(see, for example, the discussion of Searle’s “Chinese Room
Problem” in Arbib and Hesse (1986)). My own response is an
evolutionary metaphor: just as amoeba-like creatures evolved
into humans, so current machines may evolve into indisputably
intelligent machines; it may then be a terminological choice as
to whether a current Al system is a little intelligent or simu-
lates some aspect of intelligence. However, taking a leaf from
the Husserlian position of Dreyfus (1979), one should not ex-
pect such “intelligence” to be a human intelligence if exhibited
by a machine that lacks a human body or human social interac-
tions. Having thus sampled the debate on “Can a human-built
machine be intelligent” we now return to the question “Is the
brain a computer?”

Whether a monist or a dualist, the brain theorist seeks to show
that much mental activity or other aspects of animal behavior —
such as action, perception, and memory — can be explained by
brain mechanisms. Where the connectionist is content with an
artificial neural network which simulates (and possibly exhibits)
the overt behavior of a human engaged in cognitive activity,
a brain theorist seeks a structural as well as functional homol-
ogy: the program should simulate the interactions of subsys-
tems comparable to anatomically defined regions of the brain
— be they the large regions corresponding to the data of the
neurological clinic or functional human brain imaging, inter-
mediate regions like layers, columns, or modules, or individual
neurons or subneural components (see Appendix H). He may
proceed top-down, seeking to find a plausible functional de-
composition of some overall behavior (using, e.g., the tools of
schema theory (see Appendix C) or directly mapping brain re-
gions to models of the neural circuitry which comprises them),
or bottom-up, seeking to find the properties of various intercon-
nections of low-level components. In the end, these analyses
meet in the interaction of theory and experiment. The brain at

these levels of analysis is not like a serial computer executing
a single program; rather, the style of the brain is cooperative
computation in which overall functions are subserved by the
concurrent, mutually shaping, excitatory and inhibitory activity
of many subsystems. This approach to understanding the brain
combines results from a “computational” viewpoint on a par-
ticular task with data on behavior, psychophysics, anatomy, and
physiology, a pattern of interaction which may change contin-
ually as a result of neural plasticity and other adaptive proces-
ses (see Appendix G). The present article is intended to address
philosophical issues in relating computer to brain, not to survey
brain theory. However, the author has edited a massive Hand-
book (Arbib, 1995) to which the reader is referred for reviews
of many different facets of brain theory, as well as (in Part II)
road maps which guide the reader to progress in such diverse
areas as the study of biological networks, mammalian brain re-
gions, vision, other sensory systems, plasticity in development
and learning, motor pattern generators and neuroethology, and
primate motor control. Rather than reducing the brain to a con-
ventional machine, the brain theorist may actually provide a
powerful set of concepts to help computer scientists come to
terms with the new reality of large networks of cheap micro-
processors (see Appendix H).

The brain is a computer of an ancient and subtle architecture
that transcends the reach of our current technology but inspires
new developments in computer architecture. The same Hand-
book (Arbib, 1995) thus also reviews the attempts to build-a
practical technology for adaptive parallel computation using ar-
tificial neural networks whose neurons are rather loosely mod-
eled on models of biological neurons but whose interconnec-
tions can be modified by a variety of learning rules (see Appen-
dix G), most notably those of Hebbian plasticity, perceptrons,
backpropagation and reinforcement learning. Handbook papers
on these themes are grouped under such topics as learning in
artificial neural networks, computability and complexity, con-
trol theory and robotics, applications of neural networks, and
implementation of neural networks (see Appendix H).

Appendix A

In 1748, in L’Homme Machine, La Mettrie suggested that such
automata as the mechanical duck and flute player of Vaucanson
indicated the possibility of one day building a mechanical man that
could talk (see La Mettrie, 1953). However, although these clockwork
automata were capable of surprisingly complex behavior, they were
unable to adapt to changing circumstances. In the following century,
machines were built that could automatically counter disturbances to
restore desired performance, such as Watt’s governor for the steam
engine, which would let off excess steam if the velocity of the engine
became too great. The paper “On Governors” by Maxwell (1868) aid
the basis for both the theory of negative feedback and the study of
system stability.

Appendix B

Section 1.2, “Levels and Styles of Analysis”, of Arbib (1995) presents
the interdisciplinary nexus in which the study of brain theory and
neural networks is situated. The attempt to understand the mind and
to build intelligent machines includes, but is in no sense restricted
to, the study of neural networks, and so the section begins with a
historical fragment which traces our federation of disciplines back to
their roots in Cybernetics, the study of control and communication in
animals and machines. I look at the way in which the research addresses
brains, machines, and minds, going back and forth between brain
theory, artificial intelligence, and cognitive psychology. I then review
the different levels of analysis involved — whether we study brains or
intelligent machines — and the use of schemas (see Appendix C) to
provide functional units that bridge the gap between an overall task
and the neural networks which implement it.




