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ABSTRACT OF THE DISSERTATION

Compartmental Models of Single Cells and Small Networks in the Primary Visual Cortex

of the Cat

by

Paul Bush
Doctor of Philosophy iflNeurosciences
University of California, San Diego, 1995

Professor Terrence J. Sejnowski, Chair

This thesis has two main themes. Firstly it documents the processof constructing
redistic single cdl and network models, focusing particularly on how to represent
individual neurons in network models consisting of hundreds to thousands of units. In the
third chapter a method of drasticdly reducing the number of compartments in a single cdl
model is presented. The method is based on conserving the aial resistance of the model
neuron and not the surface aea The resulting reduced model neuron displays the same
eledrotonic charaderistics as the original full-size model neuron while taking upa fradion
of the memory and computation time. In addition the reduced model neuron retains the
spatial dimensions of the full model, an important consideration when attempting to
construct spatially accurate models of laminar cortical areas.

Seoondly, the subjed of corticd inhibition is addressed. In the last few yeas the

perception of the role of inhibition in the neocortex has changed from that of a powerful
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antagonist of non-spedfic excitation to that of a synergistic process helping to shape the
excitatory response. The second chapter presents results from a
single cdl smulation of a recent experiment, showing how excitatory and inhibitory
synaptic inputs interad non-linealy in a neuron’s dendritic tree It also demonstrates that
while crticd inhibition may be strong enough to suppress even strongly excited cdls, it
does not do so in the sustained manner necessary to veto non-specific excitation.
The forth and fifth chapters $ow how strong inhibition can have arole in corticd
dynamics when adivated transiently by a synchronized burst of pyramidal cdl firing. The
brief but powerful inhibitory adivity servesto truncate and demarcate the burst of firing in
the pyramidal cdl population. In this manner the inhibition is esential for producing
synchronized oscillatory adivity in the network. In this g/stem inhibition is maximally
adive during the period that excitation is greaest, but inhibition and excitation function
together rather than in opposition. In addition, the properties and charaderistics of
synchronized oscill atory adivity both within and between corticd columns are analyzed in

these chapters.
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CHAPTER |

Introduction

The perspective of a computational neuroscientist

What does the neocortex do? We know the answer to this, the neocortex does
‘us’. In al probability it is the part of the brain most responsible for generating what we
think of as ourselves, our humanness How does the neocortex function? What are some
basic principles of corticd neuronal operation? At the fundamental level of single cdls and
microcircuits consisting of hundreds to thousands of cdls, we redly have no answers to
these questions at the present time. A significant amount of work has been done & the
single cdl level discovering and analyzing the cdle properties of neurons, charaderizing
the eledrotonic spread of current and documenting a plethora of ligand- and voltage-gated
conductances (Rall 1964 Hille 1984 McCormick 1989. The results of this work are of
course esential for developing an understanding of, but do not diredly address how
single articd cdls operate and what function they are performing. In part this is because
it is very difficult if not impossble to determine the function and role of single cdis just by
studying single cdls. After charaderizing their basic intrinsic properties the cdls must be

studied in the mntext of the drcuits that they make up. The functions and principles of



operation of single rticd cdls and small networks of such cdls will most likely be
discovered together. Single cdls have feaures and properties whose purposes will only
become dea when considered in their appropriate roles in the network, just as networks
of cdls will show behaviors and exhibit phenomena that depend on particular
characteristics of their component cells.

What is the best way to discover how cortex operates, the fundamental principles?
A gred ded of experimental work has been done on cortex; anatomy and physiology of
networks as well as sngle cdl studies. This work provides constraints within which any
comprehensive understanding or theory of cortex mugt fit. It can aso provide some dues
as to how the crtex must operate; we now know that all neocortex from primary sensory
to frontal ‘association’ cortex, from rat to human cortex, is organized along similar lines
(Martin 1988. Thus, whatever the task, eat areaof cortex uses the same basic drcuit to
acomplish it - the biggest difference is the source of the inputs. The following fads are
general fedures of al neocortex: The primary input enters the midde layers, is relayed to
the upper layers and then to the deeper layers. The upper layers projed to other corticd
areas and the lower layers projed out of cortex and badk to the origin of the inputs. Most
corticd neurons are excitatory and are covered in spines, they are the projedion neurons
of cortex. Approximately 20% of corticd neurons are inhibitory and are not very spiny,
they are the interneurons. Recent work shows that the excitatory projedion neurons also
make significant contributions to the intrinsic drcuitry of cortex, and the details of this
circuitry are beginning to be mapped out (see Douglas and Martin (1990b) for review).

However, these data, synthesized into principles of organizaion, are not principles
of function. It is unlikely that principles of function at the level of the corticd microcircuit
- how a oorticd column operates, beginning with its dynamics - can ke divined just from
consideration of the data. The main reason for this is that corticd circuitry is © complex

and consists of many feedbadk loops. Consider, for example, the first few synapses in the



primary visual cortex of the cd, focusing just on the feaures that are likely to be general
properties of neocortex. The spiny stellate cdisin layer 4 recave anumericdly small input
from the thalamus, a much larger input comes from the neighboring (200 pum) layer 4
spiny stellates in the same @wlumn. The thalamic input also adivates layer 4 inhibitory cdls
which contad the spiny stellates. The spiny stellates in turn contad the inhibitory cdls,
and the inhibitory cdls contad ead other. However, the largest input to the spiny stellates
is from pyramidal cdls of layer 6 which contad layer 4 spiny stellates and inhibitory
neurons over a wide aea(up to 1mm). These layer 6 cdls aso recave dired input from
the thalamus and projed badk to the predse aeafrom which they receve input. A portion
of their dendritic treearborises over awide aeain layer 4 (~500 um) where it can recave
inputs from spiny stellate cdls, inhibitory interneurons, thalamic afferents and possbly
other layer 6 cdls (Ahmed et al. 1994. A consideration of this anatomy is daunting
enough for someone interested in how layer 4 responds to thalamic input, but there is also
the physiology to consider. Spiny stellates and layer 6 pyramids fire relatively low
frequency adapting trains of adion potentials while inhibitory interneurons such as those
of layer 4 (clutch cdls) have low thresholds and fire high frequency non-adapting trains of
short duration spikes (McCormick et al. 1985. Layer 6 cdls are particularly sensitive to
modulatory neurotransmitters sich as noradrenalin and aceylcholine which cause dramatic
changes (increases) in response rates (Singer et al. 1976. These modulatory systems are
not very adive under the anesthetized conditions of most in vivo experiments. In order to
understand exadly how layer 4 (the gateway to cortex) functions, all these fads must be
considered together.

Consider just the cae of an excitatory projedion that terminates on both
excitatory and inhibitory neurons in its target area a common feaure of neocortex. What
is the function of this projedion? Is it excitatory or inhibitory? A definitive answer cannot

be given without knowing the intrinsic properties of the input and target cdls as well as,



and this is crucia, the airrent state of the network. If the target cdls are reatively
hyperpolarized then the lower threshold inhibitory neurons will fire first and prevent any
adivity building up in the excitatory cdls. If the target cdls are depolarized by other
synaptic adivity then the excitatory cdls, containing sub-threshold voltage-dependent
conductances adivated by depolarization, will fire in response to the input and adivity will
begin to build up in the target populatidtirsch and Gilbert 1991).

So the state of all of the components of the corticd circuit at any time is a major
determinant of its response to input. Returning to the cae of layer 4 we seethat it is
difficult if not impossble to say what the output will be to any input just by considering
the (extremely complex) anatomy and physiology. Somehow we neel to incorporate dl
that data and at the same time keep tradk of the state of all the components in the drcuit
as the response develops. The most effedive way of doing this at present is with computer
simulation. All the anatomicd data and intrinsic physiologicd properties can be included in
acarate representations of neurons and their synaptic connedions. The states of every
component are updated as the smulation is numericdly integrated. Idedly, one can just
watch the results appea - if your model is acairate you discover how layer 4 responds to
input just by watching the simulation progress.

Of course in pradicethings are not so simple. Firstly, the simulation is completely
dependent on the data put into it. There must be enough reliable data to constrain the
model, if any parameters have to be estimated then it must be shown that the results of the
smulation are not affeded by variations in these parameters. Constraining simulations
with experimental data is the biggest problem to overcome when doing redistic models of
the brain. Many brains g/stems cannot yet be redisticadly modeled because sufficient data
does not yet exist. Only in the last few yeas has sufficient data become available (and
computers beame powerful enough) to attempt redistic cdlular models of primary visual

cortex.



Seoondly, the model neurons and synapses must be acairate representations of the
known experimental data. Fortunately cable theory (Rall 1964 and Hodgkin Huxley
voltage-dependent conductance dynamics (Hodgkin and Huxley 1952 have been proven
to provide robust descriptions of single neuron synaptic integration and adive responses.
These systems of equations have been incorporated into a simulation padkage known as
NEURON (Hines 1989, which through its various incarnations has been the smulator |
have used for most the simulations presented in this thesis. Beyond the single neuron level
there ae other isaues of acarracy in representation to be cnsidered. Once such issue,
forced on us by the limits of computer power, is how to represent single cdls in network
simulations containing hundreds or thousands of units. The large compartmental models
used for single cdl studies take up too much memory and run too slowly, as well as being
simply to unwieldy for convenient use in network simulations. The third chapter in this
thesis addresses this isaue, introducing a tedhnique to drasticaly reduce the cmplexity of
compartmental neuron representations while preserving their esential eledrotonic
properties.

The common theme running through the other three dapters (I have to thank my
supervisor, Terry Sginowski, for steeing me in this diredion) is the role of inhibition in
cortex. The prevaent view of the role of corticd inhibition until very recently was as a
negator or veto of inappropriate, broadly tuned excitation (Martin 1988. As well as
seaming intuitively quite reasonable, this theory appeaed to be supported by strong
experimental evidence (Sillito 1975. However, later experimental and theoreticd work
challenged the assumption that corticd stimulus sledivity is based on strong inhibition of
inappropriate excitation (Douglas et al. 1988 Koch et a. 1990 Ferster 1986 and even
suggested that inhibition in cortex is not strong enough to suppress neurons receving
strong excitatory input (Douglas and Martin 199Qa). In Chapter 2 the dfed and strength

of inhibition is assessd in single cdl smulations based on experiment. It is $own that



although strong and effedive inhibition can be evoked duing physiologicd synaptic
stimulation, such inhibition must be transient and not responsible for sustained inhibition of
excitatory input. Chapters 3 and 4 investigate aparadigm in which such strong, transient
inhibition not only occurs but credes the dharaderistic network dynamics. This paradigm
is g/nchronized oscillatory adivity, a phenomenon observed in a wide range of
experimental preparations (Singer 1993 and the subjed of significant speaulation as to its
role (Crick andKoch 1990).

The work presented here is a beginning in the field of redistic modeling of corticd
microcircuitry. It has involved itself in one of the fundamental principles of corticd
circuitry operation; the role of inhibition. However, it is only a starting point, and even a
full model of a corticd column of this type would not provide dl the answers as to how a
canonicd cortica microcircuit functions. This is because the type of model | have worked
on to date does not include leaning or plasticity. Corticd circuitry is not static, the
synaptic strengths and perhaps the physicd connedions constantly change & the crtex
does its job. Oncethe basic properties of a crticd microcircuit have been established it is
most likely that the drcuit will have to be considered in the context of leaning and change
in order for us to be ale to fully understand its function. Studying the static drcuit is
equivalent to studying the single cdl in isolation - an essential step but it cannot lead to a

comprehensive theory of cortex.
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CHAPTER I

Effects of Inhibition and Dendritic Saturation in

Simulated Neocortical Pyramidal Cells

Summary and Conclusions

1. We have used compartmental models of reconstructed pyramida neurons from
layers 2 and 5 of ca visua cortex to investigate the nonlinea summetion of excitatory
synaptic input and the effectiveness of inhibitory input in countering this excitation.

2. In smulations that match the conditions of a recet experiment (Ferster &
Jagadeesh, 1992, dendritic saturation was sgnificant for physiologicd levels of synaptic
adivation: A compound excitatory postsynaptic potential (EPSPH eledricdly evoked
during a depolarization caused by physiologicd synaptic adivation was deaeased by up to
80% compared to an EPSP evoked at rest.

3. Synaptic inhibition must be coadivated with excitation to quantitatively match
the experimental results. The experimentally observed coadivation of inhibition with
excitation produced additional current shunts that amplified the deaease in test EPSP

amplitude. About 30% of the experimentally-observed deaease in EPSPamplitude was
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caused by deaeases in input resistance (Rin) due to synaptic conductance danges, a
reduced driving force accounted for the remaining decrease.

4. The amount of inhibition was then increased by nealy an order of magnitude,
to about 10% of the total number of inhibitory synapses on a typica corticd pyramidal
cdl. The sustained firing of this many inhibitory inputs was sifficient to completely
suppressthe firing of a neuron recaving strong excitatory input. However, this level of
inhibition produced a very large reduction in Rjn. Such large reductions in Rjn have not
been observed experimentally, suggesting that inhibition in cortex does not ad to veto
(shunt) strongsustained excitatory input (of order 100 ms).

5. We propose instead that strong, transient adivation (< 10 ms) of a neuron's
inhibitory inputs, sufficient to briefly prevent firing, is used to shape the temporal structure
of the cdl's output spike train. Spedficdly, corticd inhibition may serve to synchronize the

firing of groups of pyramidal cells during optimal stimulation.

Introduction

The traditional function assgned to inhibition in cortex is to oppose excitation,
ading to veto or shape the response of corticd cdls by negating inappropriate excitation
(Koch et al., 1987. Evidence for this view was provided by blocking inhibition with
bicuculine and observing a deaease in the response seledivity of corticd neurons (Silli to,
1975. However, theoreticd studies (Koch et al., 1990 have shown that inhibition strong
enough to veto (shunt) significant amounts of excitatory current should produce
measurable deaeases in R, of the neuron in question. Such deaeases in Ri, have never
been seen in vivo when corticd neurons do not respond to non-preferred stimuli (Berman

et a., 1991 Dougas et a., 1988, and eledricdly-evoked thalamocorticd EPSF are not
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reduced in amplitude during visua stimulation at the nonpreferred orientation (Ferster &
Jagadeesh, 1992. These results have led to the @nclusion that corticd neurons receve
neither excitatory nor inhibitory input in response to non-preferred stimuli (Berman et al.,
1991). This conclusion is supported by results $owing that both the excitation and the
inhibition that a corticd neuron receves are tuned to the preferred orientation (Ferster,
1986).

Thus it is becoming clear that the role of corticd inhibition is more complex than a
veto of sustained, untuned excitation. A number of other functions for inhibition have been
proposed: Recett physiologicd experiments using dual gratings (Bonds, 1989 have
suggested that a general, non-seledive inhibition ads as to normalize ortica responses.
This idea recaves dired anatomica support from the recent demonstration that large
basket cdls snd (inhibitory) inputs to regions representing al orientaions, not just iso- or
crossorientations (Kisvardy & Eysel, 1993. Dougas and Martin have proposed that
corticd inhibition ads to increase the threshold of target neurons and gate intracorticd re-
excitation (Douglas & Martin, 1992. In order to remain in a state that is snditive to
inputs, the excitation and inhibition to a articd cdl should be balanced (Bell, Mainen &
Sejnowski (unpublished data)).

In order to study these issues we have smulated a recent experiment (Ferster and
Jagadeesh 1992 that used in vivo whole cdl patch rearding of neocorticad neurons to
study interadions between synaptic inputs. We have gplied a compartmental model to the
data of Ferster and Jagadeesh (1992 and shown that they are mnsistent with nonlinea
interadions occurring in dendrites between excitatory inputs alone and between excitatory
and inhibitory inputs. The same model was then used to determine @nditions under which
inhibition can prevent the firing of a neuron receaving synaptic excitation that is grong
enough to cause it to discharge & high rates, and how much Rjn would change under

these conditions. Our results, consistent with the experimental data, lead to a hypothesisin
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which inhibition is grongly adivated duing periods of maximum excitation, yet not in a

manner that causes a suppression of the firing response.

M ethods

Simulations were performed using standard techniques for compartmental models
of branchingdendritic treesRall, 1964); two
digitized HRP-filled pyramidal cels from layers 2 and 5 of ca visual cortex (Koch et a.,
1990 were modeled (Fig. 1), eahh having approximately 400 coupled cylindricd
compartments containing only resistive and cgpadtative dements. The simulator CABLE
(Hines, 1989, running on a MIPS Magnum 300033, required about 1 minute of

computation to simulate 100 ms of real time.

Passive parameters

Appropriate values of the passve parameters (spedfic membrane resistance R,
spedfic membrane cgadtance Cp, and spedfic axia resistance R;j) were sdleded: Cp
for neuronal membrane has a long-established value of 1 pF/cm? (Jadk et al., 1975. The
acceted vaue of R;, at least in the mammalian central nervous g/stem, has receantly been
revised upwards from its traditional value of about 70 Qcm for a number of reasons. 1)
Voltage responses to brief current pulses could not be modeled acarately with a small R;
(Segev et a., 1992 Shelton, 1985 Stratford et al., 1989. 2) When modeling cerebellar
Purkinje cdls, a larger Rj was necessary to produce significant attenuation of adion
potentials as they invade the dendritic tree (Bush & Sejnowski, 1991) 3) A large R was

needed to explain the observed somatic to dendritic input conductance ratio and stealy-
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state voltage dtenuation of Purkinje cdls (for a discusson of this issie see Shelton

(1985). The value dhosen for R; in this gudy was 200 Qcm (Bernander et al., 19971,
Segev et al., 1998helton, 1985Stratford et al., 1989).

Once Rj, Cy,, and the morphology have been fixed, the value chosen for Ry, will
determine Rip, the time constant, Ty, and the length constant, A, of the cdl. Receant results
using whole-cdl patch eledrodes and Cs*-filled sharp eledrodes have increased the
estimate of Ry, from its traditional value of 5-10 kQcm? to a value of 50 to 100 kQcm?
(Andersen et al., 1990 Major et a., 1990 Spruston & Johnston, 1992 Staley et 4d.,
1992, giving Rin’'s in the range of a GQ. However, these results were not obtained in
vivo, where the dfed of badkground synaptic adivity is such that a neuron with a Ry, of
100kQcm? and can have an effedive Ripy aslow as 20 MQ and an effedive T, of around
20 ms when part of an adive in vivo circuit (Bernander et a., 1991, Rapp et al., 1992.
The badkground synaptic input deaeases the dfedive average Ry of an in vivo neuron in
a way that can be acarately taken into acount by smply using a lower value for the
effedive Rm in the model (Barrett & Crill, 1974 Bernander et a., 1991 Holmes &
Woody, 1989. A sample of 25 visual cortica neurons recorded using sharp eledrodesin
vivo had Rijpy’s ranging from 10 to 153 MQ (mean 69 MQ) (Douglas et a., 1991). Two
independent measurements of visual corticd neurons recorded using whole-cdl patch
eledrodesin vivo had Rjy’s ranging from 50to 200MQ (Ferster & Jagadeesh, 1992 and
50to 150 MQ (Pei et a., 1991). The range of Rip values reported by these studies are
similar. Values for Rjn of 50to 150MQ are doser to values obtained from the best sharp
eledrode in vitro recordings (Tanaka d a., 1991) than to the hundreds of MQ obtained
using whole-cell clampingn vitro.

With a Cpy of 1 pF/em? and R; of 200 Qcm, we found that using a value of 20
kQcm? for Ry produced Rjn's for the model layer 5 and layer 2 pyramidal cdls of 45 MQ
and 110MQ, respedively. The layer 2 cdl had a greaer Ri, because it was smaller. With



14

these parameters (the standard model) both model cdls have adendritic T, of 20 ms,
which is a typical value faneocortical cellsBernander et al., 1991).

Though we believe that these values produce an acairate model of the in vivo
neocortica pyramidal neuron, thereis gill considerable controversy surrounding "corred”
values for the passve parameters Ry, and Rj. Consequently, all simulations were repeaed
using values for R; of 70, 200 and 500Qcm and values for Ry of 5, 20 and 100kQcm?.
We focus on results obtained with the standard model (the default for al simulations),
which we believe to be the most acarrate fit to a functioning pyramidal cdl, but we dso
present and discuss results obtained using the full range of values for Ry and R;. In
general we found only a quantitative, rather than a qualitative, difference between
smulations using dfferent parameter values, and none of our conclusions depend on

precise values.

Synapticconductances

EPSR and inhibitory postsynaptic potentials (IPSP) in our models were simulated
as apha function conductance danges with a peak amplitude of 0.5 nS and a time to pe&k
of 1 ms. EPSR had areversal potential of 0 mV and IPSF areversal potential of -70 mV
(Connors et a., 1988 McCormick, 1989. These parameters were diosen because they
produced EPSP at the soma with the same time @urse and amplitude & those observed
experimentally (Mason et a., 1991, Thomson et al., 1988. Some simulations were done
with synapses on explicitly modeled spines. In these caes we used the same 2-
compartment model spine morphology as Qian and Seinowski (1989, with spine nedk
dimensions 1 pm x 0.1 pm and head 0.69 pm x 0.3 pum. Trains of EPSF or IPSF were
modeled acording to a Poisn distribution with a mean frequency that is dated for ead

case. The resting membrane potential was -65 mV.



Active conductances

For some smulations adive conductances were placel at the soma to generate
adapting trains of adion potentials, as observed in regular-firing corticd neurons
(McCormick et a., 1985. The adion potential was mediated by fast sodium and
potassum conductances (gna + OKd)- A high threshold cacium conductance (gca),
adivated by ead spike, introduced cacium into the cdl. Intracdlular cdcium acawmulated
in the soma @mmpartment and decg/ed exponentially to its resting value with a time
constant of 20 ms (Traub et al., 1991). A dow cdcium-sensitive potassum conductance
(gkca) Was included to produce the alaptation of firing rate. All the conductances used the
Hodgkin-Huxley-like kinetics parameters developed by Borg-Graham (Borg-Graham,
1987), except for gkca Which had an adivation rate equal to 200 times the intracdl ular
cdcium concentration (in ms'1) and a deadivation rate ejual to the redprocd of the
adivation rate. The implementation of our kinetic scheme follows that of Lytton and

Sejnowski (1991). Briefly, each ionic currehtwas calculated from

I'=gmh(V-Er) (1)

where g is maximal conductance, m is the adivation variable, n is the exponent, h is the

inadivation variable (gng only), V is membrane potential and E; is the reversal potential of

the ion concerned. The cdcium current was cdculated using the Goldman-Hodgkin-Katz

equation (Hille, 1984, with gca the cdcium permeability. The time- and voltage-

dependent variable), converged on a steady state valugs, given by

Minf =/ (Amt Brm)
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with a time constanty, given by

tm= 1/(am* Bm)

The rate constantsy, andfBmn were defined by the equations

am = ag exp[zg(V-V12)F]/RT

Bm = bo exp[-z(1-g)(V-Vy/2)F]/RT

where F is the Faraday constant, R is the gas constant and T is temperature. The kinetics
of eat channel was determined by the values assgned to the parameters agp,bp,zg and
V2. A similar set of equations governed the inadivation variable, h, and its gealy state

value,hjnt. The values of all the parameters used in the model are shown in Table 1.

Results

Dendritic saturation

Dendrites have a much higher input impedance than the soma (Rinzd & Rall,
1974); thus even single EPSP can produce significant loca depolarizaion and reduce the
driving force on simultaneous and subsequent EPSF on the same dendritic branch. In
addition, synaptic conductances add to the resting membrane @nductance of the neuron

(Barrett & Crill, 1974 Bernander et al., 1991 Holmes & Woody, 1989 Rapp et al., 1992

(see Methods). This effedive deaease in Ry, and increase in A also results in reduced
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depolarizations for simultaneous and subsequent EPSP. We refer to these two
phenomena mlledively as the dendritic saturation effed, although the term *saturation’
does not necessarily imply that the membrane is at the synaptic reversal potential or that
Rm has been effectively reduced to zero.

There is ©me dired experimental evidence for saturation during Synaptic
adivation under physiologicd conditions. Ferster and Jagadeesh (1992 have
demonstrated that the size of an EPSP evoked in visual corticd cdls by eledricd
stimulation of the LGN was reduced duing depolarizaions caused by visual stimulation
compared to its sze d the resting potential. The reduction in EPSPsize was proportional
to the somatic depolarizaion caused by the visual stimulation. Thus, an EPSPthat peaked
at about 6 mV at rest was reduced to lessthan 1 mV when the cdl was depolarized from a
resting potential of -60 mV to a potential of -40 mV by visual stimulation (Fig. 3a)
(Ferster &Jagadeesh, 1992).

Ferster and Jagadeesh interpreted their results as evidence that the synaptic sites
(dendrites) were significantly more depolarized than the soma during synaptic adivation of
the cdl, thus producing saturation by the process described above. We have tested this
hypothesis by simulating their experiment, and the results are shown in Figs. 2 and 3. The
model layer 2 pyramidal cdl was used becaise its morphology (Fig. 1) is reasonably close
to that of the putative layer 4 spiny stellate cdls that Ferster and Jagadeesh studied. A
constant current of -0.1 nA was injeded starting at 30 ms to prevent firing duing the
synaptic adivation, asin the experiments of Ferster and Jagadeesh. Visual stimulation was
smulated by 70 excitatory synapses placel randomly on the basal/oblique dendrites,
adivated by a Poison processat some mean frequency (for example, 50Hz) starting at 80
ms. 35 additional excitatory synapses were placed on thedsardstic segments as
the initial 70, and were given a single smultaneous gimulation at 5 ms and again at 150

ms. The firing of these 35 synapses represented the dfeds of eledricd stimulation of the
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LGN: the first stimulation gave a ontrol EPSR the second, occurring duing ‘visual
stimulation’, gave atest EPSPR Different trials using a different seed for the random
number generator produced Poison-distributed trains of EPSP. One such tria is siown
inFig. 2 (upper tracg. Thetest EPSPwas sgnificantly reduced with resped to the control
EPSP (by 34% in this case).

Effects of spines

The saturation effed underlying the reduction in EPSPamplitude was dependent
on the membrane potential at the synaptic site. Excitatory synapses on red pyramidal cdls
are made onto spines, not onto dendritic shafts. It was concavable that the small
dimensions, and hence higher input resistance, of a spine heal relative to that of a
dendritic shaft might lead to greaer saturation effeds for EPSF on spines vs. shafts
(Segev & Rall, 1988. Consequently, we performed some simulations with excitatory
Synapses on spine heads rather than dendritic shafts. For a single 0.5 nS EPSR there was
very little difference in the depolarization recorded at the soma for a synapse on the head
of a spine vs. on the dendritic shaft; the adivation of synapses on spines produced a
somatic pesgk amplitude more than 90% of that from synapses on the shaft. Significant
saturation of singl&PSPs due to the passive
properties of the spine (Douglas & Martin, 199M) was only observed if the peak EPSP
conductance was increased to several nS. EPSP produced by these conductance danges
were larger than those typicdly observed in neocortica pyramidal cedls (Mason et al.,
1991).

To smulate the experiment of Ferster and Jagadeesh with spines explicitly
included, 70 spines were placed on the 70 basal dendritic compartments chosen above,

then 35 more were alded to provide the control and test EPSP. The result of the
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simulation with all excitatory synapses on spines (lower trace Fig. 2) was not significantly
different from that with al excitatory synapses diredly on dendritic shafts (upper trace.
The presence of spines did not make adifference over the full range of ‘visual stimulation’
frequencies used. We dso found very little difference between smulations using 35 02 nS
test synapses and those using 14&%est synapses.

Although spines may be of grea significancein some antexts (Zador et al., 1990,
we were only concerned here with ensuring that our results would not be significantly
affeded by pladng al the excitatory synapses on dendritic shafts rather than on spine
heads. Fig. 2 shows that this approach is justfied. For this reason, in the remaining

simulations spines were not included.

Effect of excitation on saturation

Fig. 3b shows the results of multiple trials at different frequencies of ‘visual
stimulation’. Higher frequencies of excitatory input produced geder somatic
depolarization, aswould occur in a cdl asthe visual stimulus was presented at increasingly
optimal values of orientation, velocity and dredion. The pesk amplitude of the EPSPis
plotted against the somatic membrane potential (Vm) just before the EPSPoccurs. As in

the experimental data (Fig. 3a), the anplitude of the evoked EPSPdeaeased linealy with
Vm. The dendrites were depolarized to between -25 mV and -20 mV during maximal
synaptic adivation, which means that the EPSPdriving force was reduced by about 60%.
Since the test EPSPwas reduced by about 80% during maximal synaptic adivation (Fig.
3b), areduction in EPSPsize of approximately 20% was due to a reduction in Rj, caused
by the excitatory synaptic input. A more detailed, quantitative description of changes in

Rin during synaptic activation is presented in the last section of the results.
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The results own in Fig. 3b provide aqualitative match to those of Ferster and
Jagadeesh, but the difference between the level of somatic and dendritic depolarization in
the model was not gred. In addition, the slope of the relationship between EPSPheight
and somatic Vm was not as gee asin the experimental data: the esciss intercept (EPSP
reduced to 0 mV) is about -40 mV in the experimental results (Fig. 3a) and -25mV in Fig.
3b. Ferster and Jagadeesh report that visual corticd cdls cannot be depolarized by more
than 20 mV from rest by visua stimulation (Ferster & Jagadeesh, 1992. For our model

cdl (resting potential -65 mV), this corresponds to complete saturation at a somatic Vm

of -45 mV.

Effect of inhibition on saturation

The difference between our smulations of dendritic saturation and the
experimental results could be due to the omisson of inhibitory input in the smulation.
Recat studies (Berman et a., 1991, Douglas et al., 1988 Ferster & Jagadeesh, 1992
have indicated that inhibitory input to visual corticd cels is wea during nonpreferred
responses and is grongly correlated with the degree of adivation of the excitatory cdls
(Ferster, 1986 Somers et al., 1993. This fits with anatomicd evidence that spiny
excitatory cdls make dired contadas with inhibitory cdls, which then make dired contads
bad onto the same excitatory population (Douglas & Martin, 1991). We repeded the
simulation described above, this time including 33inhibitory synapses, 12 on the soma and
21 on the preterminal basal/oblique dendrites. This is the pattern of innervation
charaderistic of basket cdls, the most common inhibitory cel type in cortex (Martin,
1988. Inhibitory (smooth) cdlsfire & much higher rates than pyramidal cdls (McCormick
et a., 1989; therefore, inhibitory synapses were adivated at a mean frequency twice that

of the excitatory synapses. Fig. 3c shows the results of including inhibition in the



21

simulation. The EPSHsomatic Vi, dope is seeer, with an absciss intercept of about -35
mV. This is much closer to the experimental data of Ferster and Jagadeesh (Fig. 3a).
Dendrites were depolarized to about -30 mV during maximal synaptic adivation, lessthan
in the excitation-alone cae, yet the EPSHsomatic Vi, dope is degoer with inhibition. A
dendritic depolarization to around -30 mV reduced the EPSPdriving force by about 50%.
Test EPSP were reduced in amplitude by up to 80%, so the remaining 30% must be due
to deaeases in Rj caused by the excitatory and inhibitory synaptic conductance danges
(see Discusgon). There may also be some ntribution to the reduction in Rj, and hence
EPSPamplitude from intrinsic sub-threshold voltage-dependent conductances during the
experiments of Ferster and Jagadeesh. The smulations of Fig. 3 dd not include voltage-
dependent conductances, so we cainot evaluate the extent of this contribution, but the
simulations oBernander et al. (1991) indicate that it is likely to be relatively small.

Ferster and Jagadeesh (1992 focused on reduction in driving force @& the
explanation for the deaeases in evoked EPSPamplitude that they observed, but we found
that deaeasesin R, (deaease in effedive Ry) due to excitatory inputs made asignificant
contribution. Furthermore, additional current shunts due to inhibitory synaptic adivity
must be included to produce an acarrate fit to the experimental data. The data in Fig. 3c
fall along a straight line because the major component of the saturation effed is due to the
linea reduction in driving force The contribution from increased membrane @mnductance
which would produce a oncave (hyperbolic) curve, is masked by the driving force dfea
and the variance in the data. When inhibition was included in the smulation the soma
could not be depolarized past -45 mV by the firing of the 70 excitatory synapses, which is
the limit of depolarization obtainable with optimal visual stimulation reported by Ferster
andJagadeesh (1992).
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Fig. 3d shows that the deaease in test EPSPamplitude due to dendritic saturation

is gable acoss a wide range of values for Ry, and R;j. The rate of deaease of EPSP
amplitude with somatic ), was constant over the full parameter range.

Fig. 4 dsplaysin higher resolution dendritic (dashed lines) and somatic (solid lines)
membrane potentials at the time of the test EPSP(arrow) for synaptic input with (lower
traces) and without (upper traces) inhibition. A number of important points are ill ustrated:
Because of a higher Rjp, the dendrite is more depolarized than the soma (and this dendrite
is less depolarized than most), with larger voltage fluctuations due to the influence of
individual PSE. The dendrite is less hyperpolarized than the soma by the inhibition
because the inhibitory synapses are proximal and ad by shunting current that passes from
the dendrites to the soma. The dfed of inhibition is to increase the slope of the test

EPSRsomatic Vm graph (Fig. 3c), so at the low input rate shown here inhibition causes a

small increase in the size of the test EPSPby dlightly hyperpolarizing the membrane thus
increasing the excitatory synaptic driving force. GABAA inhbition, the type we ae
modelling here, ads by incressing membrane onductance rather than diredly
hyperpolarizing the membrane, as its reversal potential is close to the resting membrane
potential. The driving force for inhibitory chloride anductance only exists when there is
depolarizaion produced by excitatory synaptic input (slent inhibition). At higher firing
rates, when the inhibitory conductance is large, the small increase in excitatory driving
force caused by theyperpolarization, (which isiinimised at the site of
the excitatory synapses by the spatial separation of the sources of excitatory and inhibitory
input, mentioned above) is more than offset by the shunting effed of the inhibition and the
test EPSP is decreased in size (Fig. 3c).

The soma uld still be depolarized by 20 mV from rest even when the 33
inhibitory synapses are firing at their maximum rate (Fig. 3). This indicates that firing of

the postsynaptic cdl would persist despite significant inhibition. This sems to support the
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concluson of Douglas and Martin (19908), who simulated the dfed of a maintained
inhibitory conductance on the firing rate of a simplified model neuron driven by
intrasomatic current injedion. They suggested that inhibition in cortex cannot prevent the
firing of a neuron recaving strong excitatory input. In contrast, studies in vitro indicae
that synapticdly-evoked GABAA inhibition is grong enough to briefly suppressthe firing
of cortica neurons driven by large depolarizing current injedions (Connors et al., 1988
McCormick, 1989, although these results must be interpreted with caution given the large

difference in GABA, conductance eliciteiah vivo andin vitro (Berman et al., 1989).

Effectiveness of inhibition

Under what conditions could inhibition be strong enough to suppressfiring? What
isthe dfed of strong synaptic adivation on Rjn of the target neuron? These have been the
subjed of previous experimental and theoreticd studies (Berman et al., 1991 Douglas et
al., 1988 Koch et al., 1990. To address these issies the model layer 2 pyramid was
driven by the same concurrently adive 70 excitatory and 33 inhibitory synapses as in Fig.
3. Active conductances were alded to the model (Table 1) to produce alapting trains of
adion potentials (Fig. 5a). Fig. 5b shows the firing rate of the model cdl as a function of
the firing rate of the 70 excitatory synapses. The solid traces are results obtained without
any inhibition. The dashed traces are results obtained with the inhibitory firing rate fixed at
100 Hz, which corresponds to the simulations done by Douglas and Martin (199Qg). The
crosses are the instantaneous firing rate of the model for the first interspike interval. The
boxes are the steady-state (adapted) firing rate. In agreament with Douglas and Martin,
the dfed of the inhibition was to increase the threshold of the neuron and only slightly

reduce the firing rate above threshold.
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These smulations negled the observation that inhibition is correlated with
excitation (Ferster, 1986, which would occur if the inhibitory cedls were being driven by
the excitatory cdlsthat they were inhibiting (Douglas & Martin, 1991). It is reasonable to
asume that the firing rate of the inhibitory inputs would increase with the firing rate of the
pyramidal cdl, and hence with the firing rate of the pyramidal cdl’s excitatory inputs (the
70 excitatory synapses). Therefore, we repeaed the @ove smulations, this time setting
the firing rate of the inhibitory synapses to twice that of the excitatory synapses. The
results, shown in Fig. 5b (dotted traces), demonstrate that inhibitory input does have the
potential to significantly reducethe firing rate of the target cdl. However, the firing rate of
the pyramidal cdl was gill substantial: the inhibition produced by 33 synapses is not
enough to shut off the target cell.

The smulation was repeaed with the 33 somato-dendritic inhibitory synapses
replaced by 25 inhibitory synapses on the first 25 pum of an axon initial segment consisting
of 7 cylinders whose diameter tapered from 2.5 pm to 0.6 pum. This is the innervation
pattern charaderistic of chandelier cdls, a type of corticd inhibitory interneuron (Farinas
& DeFelipe, 1991b). Sodium and potassum spike conductances were included on the first
25 um at the same density as on the soma (Table 1). The results (not shown) were nealy
identicd to those shown in Fig. 5. Thus, we found no difference between the dfed of
basket cdl inhibition and that of chandelier cdls (see &so Lytton and Sginowski (1991)).
Similar results were dso adbtained when using the layer 5 cdl insteal of the layer 2 cdl
(not shown).

Corticd pyramidal cdls receve hundreds of inhibitory synaptic contads on their
somata and proximal dendrites (Douglas & Martin, 199(; Farinas & DeFelipe, 1991a).
Therefore, we increased the number of adive inhibitory synapses in our smulation. We
found that the adivity of about 200 somatic inhibitory synapses was sufficient to prevent a

cdl recaving strong excitation from firing (Fig. 5c). Consequently, strong corticd
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inhibition is able to prevent the firing of even strongly driven pyramidal cdls, contrary to
previous conclusions (Douglas & Martin, 199(). Firing was completely suppressed by
200 inhibitory inputs whether Ry, of the model layer 2 pyramid was 20 or 100 kQcm?.
When Ry was 5 kQcn?, the resting Rip, of the model cell was  low (about 35 MQ) that
the 70 excitatory inputs did not drive the cdl very strongly and the adivity of just 33
inhibitory inputs was sufficient to suppress firing.

The inhibition produced by the adivity of 200 inhibitory inputs caused a huge
deaease in Rjp of the model neuron. Large deaeases in Rjn, were not seen in vivo during
nonpreferred responses or sustained hyperpolarizations (Berman et al., 1991 Douglas et
al., 1988 Ferster & Jagadeesh, 1992). Thus, intracorticd inhibition hes the potential to
shut off the firing of even strongly adivated neurons, but this type of (shunting) inhibition
has not yet been observed in corticd neurons. A possble reason for thisis siggested in the
discussion.

Previous smulations have shown that Rijy of a neuron must deaease by a
significant amount in order to prevent the cdl from firing (Koch et al., 1990. However, as
mentioned above, a number of recent experimental tests have shown that Rj, shows no
significant reduction during the nonpreferred response or even during sustained
hyperpolarizations that are part of an optimal response to a visua stimulus (Berman et al.,
1991 Douglas et al., 1988 Ferster & Jagadeesh, 1992. Tests of our model show that Rip
deaeased by a significant amount during the synaptic adivation used in the &ove
smulations (Fig. 6). Thus, if we @mnsider deaease in Ri as an assay for inhibition, the
level of inhibition used in the smulations $own in Figs. 3 and 5o was as least as gred as
the level of inhibition occurring during nonpreferred or hyperpolarizing visual responses.
This inhibition was not strong enough to counter significant synaptic excitation (Fig. 5b).
This is further evidence that the level of inhibition that occurs during nonpreferred

responses is not enough to prevent the cdl from firing. It is likely that alad of excitatory
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drive is what prevents the cdl from firing duing nonpreferred responses (Berman et al.,
1991;Ferster, 1986).

Table 2 shows the percentage deaease in Rjn caused by weak and strong synaptic
input. The input firing rate shown is for the 70 excitatory synapses and 33 inhibitory
synapses adive & twice these rates. The deaease in Rj, was cdculated relative to Rip at
rest in the steady state a determined by current injedions many times Ty in duration. The
deaeases in Rjn produced by even wegk synaptic input were aove the experimentally
detedable threshold (Berman et al., 1991 for al values of Ry, and Rj. We found that
approximately half of the deaease in Rjn, was due to excitatory, and half to inhibitory,
synaptic conductance dianges. This is not suprising since the individual synaptic
conductances were egual and there were @out twice & many excitatory synapses but they
fired at half the rate of the inhibitory synapses. As noted above, the smulations of the
experiments of Ferster and Jagadeesh (1992 showed that up to 20% of the EPSP
reduction was due to deaeases in Rin, even when ro inhibition was present (see
Discusson). That excitatory input alone can cause significant deaeases in Rjp, is apparent
from considering the fad that the pegk conductance of just one excitatory input (0.5 nS) is
an appredable fradion of the input conductance of a neuron (which for our model layer 2

pyramid ranged from 1.9 to 3408, depending onRand R).

Discussion

Saturation

Recant simulations of reconstructed neocortica pyramidal cdls $ow eledrotonic

compadness of the basal dendrites and oblique dendrites (lateral branches from the gicd
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trunk) over a wide range of parameter values (Holmes & Woody, 1989 Stratford et al.,
1989. Dendritic branches are quite isolated from ead other and have high input
impedances relative to the soma (Rinzd & Rall, 1974. Inputs on the same branch may
interad nonlinealy becaise synaptic aurrents and voltages depend on the locd membrane
potential and Rin, respedively, and these in turn both depend on locd synaptic adivity
(Barrett & Crill, 1974 Rall, 1964 Rall, 1967). Synaptic input could ad to reduce the
excitatory driving force ad Rjn, leading to a saturation of simultaneous and subsequent
excitatory input

In confirmation, our simulations of the experiments of Ferster and Jagadeesh
(1992 have provided evidence for two contributions to dendritic saturation: A reduction
in driving force and a reduction in Rjn (shunting). Based on Eq. (1) for the membrane
current, applied to voltage-independent synaptic conductances, these two components can
be represented analyticaly in the equation for the peak synaptic potential, AV, produced
by n synapses ead with their own reversal potential, Vil undergoing conductance dange

Agl on a single compartment with resting membrane potevitial

_ (V. -V)Ag

AV=21_"L/”2
(g, tAQ)

(2)
where V, = i\/r' AA—%I
|

n .
Ag= IZAg'

and g isthe lea&k conductance The numerator in Eq. (2) represents the driving force and

the denominator gives the shunting effed. The composite synaptic event is equivalent to a

single synapse with areversal potentia Vr that is a weighted sum of the individual reversal

potentials and a conductance equal to the sum of the individnductances.
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All of the results we have described regarding saturation of excitatory input,
effediveness of inhibition and changes in Rin were mnsistent aadoss a wide range of
values for Ry and R (Table 2, Fig. 3d). The largest value for Ry, we cnsidered (100
kQcm?) seamed wnlikely to occur in vivo. This value produced a value for Rin of more
than 500 MQ for the model layer 2 pyramida cdl, which is well outside the range
reported thus far for in vivo corticd neurons (Douglas et al., 1991 Ferster & Jagadeesh,
1992 Pei et a., 1991). Thisvalue for Ry, aso gave avaue for 1y, of 100ms. Such alarge
time constant seams incompatible with neuronal processes occurring on the time scde of
tens of ms (Gray et a., 1992). In performing the smulations siown in Fig. 3, with atm, of
100ms, the relative timing of all events had to be increased severa fold becaise the model
neuron took hundreds of msto read a stealy state in response to any stimulus. If corticd
neurons do have afundamental Ry, of 100kQcm?, the dfedive Ry of in vivo neurons is
likely to be much lower due to the dfed of badground synaptic input (Bernander et al.,
1991) (see Methods).

A number of smulations were performed with excitatory synaptic inputs on the
heads of explicitly modeled spines. The results were not significantly different from those
obtained with inputs made diredly onto dendritic shafts (Fig. 2). The reason for thisis that
the spine stem resistance (255MQ for our spines) is snal compared to the inverse of the
pe&k synaptic conductance (2 GQ) (Jadove, 1992, so that nealy al the arrent entering
the spine head flows into the dendritic shaft (the membrane cnductance of the spine is
negligible). There ae, however, circumstances when the differences between spine and

shaft synaptic input can become significaiaf & Sejnowski, 198%ador et al., 1990).

Synaptic excitation
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Although this gudy was based on smulations of single neocorticd pyramidal
neurons, the results can be used to infer some of the principles of operation of the drcuits
in the neocortex. One such principle, proposed 10yeas ago on the basis of physiologicd
evidence, is that a single synapse is ineffedive in firing another cdl (Abeles, 1982. Since
one pyramidal cdl makes on average only one or two synaptic contads onto ead of its
targets (Braitenberg & Schuz, 1991, Gabbot et al., 1987 and the vast mgjority of corticd
synapses are pyramidal-pyramidal contads (White, 1989, the dfed of a single neocortica
pyramid on another is amost negligible — certainly not enough to drive the postsynaptic
cdl by itself (Abeles, 1982. In our simulations a single synapse firing at a mean frequency
of 100Hz produced a somatic depolarizaion of lessthan a millivolt. Maximally adivating
awhole dendritic segment (depolarizing to 0 mV using current injedion) was not enough
to drive the cell to fire at the rates observed during visual stimulation.

Thus, there must be mnvergence of synaptic inputs from many cdls to produce
significant firing (Douglas & Martin, 199M). How many? Our mode! cdls required tens of
synapses, adive within an interval of a few milliseconds, to read threshold. Firing at the
rates observed duing visual stimulation required about a hundred synapses adive & afew
hundred Hz. The saturation demonstrated in Fig. 3 indicates that the alditional adivation
of more synapses has a deaeasing effed. Because the maximum firing rates we used for
our inputs were & the upper limits of sustained firing rates in cortex, it is likely that
maximal firing will require the adivity of afew hundred presynaptic cdls, as siggested for
the hippocampus (Andersen et a., 199Q Miles & Wong, 1986 Sayer et a., 1990, spina
cord (Jadk et al., 1981 Wamdey et al., 1987 and cerebellum (Rapp et al., 1992. If the
inputs were completely synchronous, a high frequency discharge could be evoked by a few
tens of adive synapses (Abeles, 1982 Bush & Douglas, 1997). This ‘dynamic range’ of a
few tens to a few hundred adive inputs is only a small fradion of the thousands of

synapses on a single pyramidal neuron (Douglas & Martin, 199(). This implies that a
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pyramidal cdl can be driven by any one of several different groups of presynaptic cdls,
allowing the same neuron to participate in many (possibly independent) processes.

Asauming passve membrane, a single EPSPwith peak conductance 0.5 nS on the
model layer 2 cdl produced a somatic depolarizaion with a pesk amplitude gpproximately
twicethat seeninthe layer 5 cdl. Thisis becaise R, of the layer 2 cdl (with the same 1)
is approximately twice that of the layer 5 cdl. We have found that twice & many
excitatory synapses were needed to drive the layer 5 cdl to fire & the same frequency as
the layer 2 cdl. This fits with the observation that large layer 5 pyramids have &out twice
the number of spines as small layer 2 pyramids. However, there is as yet no experimental

evidence that singlEPSPs are larger in layer 2 cells than in layer 5 cells.

Synaptic inhibition

The 33 inhibitory synapses used in the smulations of Fig. 3c,d are afradion of the
several hundred that exist on the soma and proximal dendrites of ead pyramida cel
(Douglas & Martin, 199(b; Farinas & DeFelipe, 1991a). The adivity of this snall fradion
was not sufficient to prevent the firing of a cdl receving strong excitation (Fig. 5b), yet it
was enough to reduce Rjp significantly (Fig. 6, Table 2). Since Riy does not deaease
during nonpreferred or hyperpolarizing responses to visua stimuli (Berman et al., 1991,
Douglas et a., 1988 Ferster & Jagadeesh, 1992, we ayreewith Berman et al. (1997) that
inhibition in the crtex (at least primary visual cortex) does not ad to counter sustained
(longer than 50-100 ms) excitation.

What then is the role of inhibition? Inhibition is correlated with excitation (Ferster,
1986; thus maximal inhibitory adivity is expeded duing the periods of maximum firing
caused by excitatory input. This gatement may seem paradoxicd, but only if the excitation

and inhibition are onsidered as smultaneous and sustained, without any temporal
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structure. However, anaysis of inhibitory adivity during visual stimulation (Fig. 14 of
Lytton and Sgjnowski (1991)) reveds that compound PSP can occur rhythmicadly rather
than randomly. This might be produced by feedbadk inhibition generated in response to
stimulation by the same excitatory cdls that the inhibition targets (Douglas & Martin,
199)). It has been shown that such a system can produce synchronization of excitatory
and inhibitory populations and consequent rhythmic IPSPB (Bush & Douglas, 1991J).
Compound EPSP are dso rhythmic in this model, but are out of phase with the IPSF. In
fad, it is the compound IPSPgenerated by the compound EPSPthat terminates the burst
of firing in the pyramidal cells and insures synchronization (Bush & Douglas, 1991).

The adivity of hundreds of inhibitory synapses would be required to generate an
IPSP cgpable of shutting off the firing of the pyramida cdls. In our smulations the
simultaneous adivity of about 200 inhibitory synapses prevented the firing of our model
cdls despite strong synaptic excitation. Such a cwmpound IPSPwould produce avery
large deaease in Ripy of the target cdl, but the deaease would be transient (of order 10
ms) because the inhibitory cdls gop firing when no longer driven by the pyramids they
inhibit. Transient conductance danges cannot be deteded by current pulse injedion
(Berman et al., 1991) but it might be possble to sample the pe&k dope cmnductance d
different membrane potentials. Thus, we suggest that the role of inhibition is to
synchronize the firing of groups of pyramidal cdls by rhythmicdly turning on transiently
but powerfully during optimal stimulation (see &so Lytton and Seinowski (1991), who
considered the dficag/ of lower frequency inhibitory inputs to entrain pyramidal cdls).
Our proposal remnciles the fad that effedive inhibition (preventing firing of target) must
cause alarge deaease in Rip with the fad that such deaeasesin Rj, have not been seenin
Vivo.

There has been very little experimental study of changes in Rjj, during the response

to optimal stimulation. Such experiments are hard to perform and interpret becaise of the
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large, rapid fluctuations in membrane potential and large supra-threshold intrinsic voltage-
dependent conductance danges occurring duing these periods. Existing data show input
conductance increases of up to 40% during optimal stimulation (Berman et al., 1991). Our
results indicate that Rjn should deaease substantially during optimal stimulation, but, as
with inhibition, the detedibili ty of this deaease using current pulses would depend on how
much of the excitatory input is transient and how much is sustained.

The inhibition discused in the @ove agument is asuumed to be GABAA
inhibition. The slower, hyperpolarizing GABAg inhibition probably has a different role
that could be investigated using a network simulation (for one suggestion see (Abbott,
1991)). In aredistic network the tempora structure of synaptic inputs would be much
closer to in vivo conditions than the random inputs used here. This would alow better
estimates of the numbers of inputs driving a pyramidal cdl and a better way to study the
role of inhibition.

Our conclusion that inhibition does not ad as a veto of sustained excitation is in
agreament with Berman et al. (1991). We have dso replicaed ther results $owing that a
modest level of inhibition does not prevent the firing of its target (Dougas & Martin,
199(). However, using revised assumptions about the amount of inhibition impading
upon a single pyramidal neuron, we have shown that a stronger level of inhibition can shut
off the firing of a strongly driven target cdl. We recncile these results by postulating that
such strong inhibition is only adivated transiently, during periods of maximum excitatory

activity.

Conclusion

Neocorticd pyramidal cdls do not linealy integrate synaptic input, even in the

absence of adive membrane properties. Despite the eledrotonic compadnessof pyramidal
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basal/oblique dendritic trees, saturation of excitatory input is a red phenomenon that
places a sharp limit on the number of adive excitatory inputs that can contribute to the
response of a particular pyramidal cell.

Corticd inhibition can in principle suppressthe firing of its targets, but a role for
inhibition as a negator of inappropriate excitatory input is not consistent with experimental
data and theoreticd studies. Both data and models lead to the view that excitation and
inhibition are asynergistic pair of processes combining coadively to shape the response of

cortical neurons to optimal stimuBérman et al., 1991; Bush & Douglas, 1991).
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FIG. 1. Drawings of remnstructed HRP-filled layer 2 (right) and layer 5 (left) pyramidal
cells. Scale bar 100m.
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FIG. 2. Simulation of reduction in amplitude of EPSP by synaptic adivity. Somatic
membrane potentia (V) during smulation of model layer 2 pyramid. A constant current
of -0.1 nA isinjeded into the soma & t = 30 ms to prevent firing (first asterisk), then 70
excitatory synapses are adivated at a mean frequency of 50 Hz to simulate visual
stimulation (second asterisk). 35 additional synapses are given a sSmultaneous gimulus to
produce a ontrol (first arrow) and test (second arrow) EPSP The anplitude of the test
EPSP is sgnificantly reduced with resped to the control. Upper trace is result of
simulation with all excitatory synapses diredly on dendritic shafts, lower traceis result of
simulation with all synapses on the headdefidritic spines (see methods).
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FIG. 3. Dendritic saturation during physiologicd synaptic adivation. (A) Experimental
data: Peak amplitude of the test EPSPplotted against Vi, just before the EPSPoccurred
while the visual stimulus was at the optimal orientation for the cdl. Arrow 1 indicates
control EPSP (before stimulation), arrow 2 indicaes test EPSP (at pe&k of visual
response) (reproduced by permisson (Ferster & Jagadeesh, 1992). (B) Simulation of the
experiment in A, as detailed in Fig. 2. Pegk amplitude of the test EPSPplotted against Vi
just before the EPSP occurred, for a variety of firing frequencies of the 70 excitatory
synapses, H=0Hz, E=25Hz, G=50Hz,1 =75Hz, D=100Hz, C=200Hz, F = 300
Hz, J = 400 Hz. The anplitude of the EPSPdeaeased linealy with V. (C) Concurrent
inhibition is included in the smulation (33 inhibitory synapses at twice frequency of
excitatory synapses). (D) Simulationsin C repeaed for Ry, values of 5 (solid), 20 (dashed)
and 100(dotted traces) kQcm? and R; values of 70 (E), 200 (G and 500(C) Qcm. Data
plotted for excitatory input frequencies of 0, 25, 100, 200 and 400Hz. Eadh point is the
average of five trials.
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FIG. 4. Effed of inhibition on dendritic saturation at low input rates. Dendritic (dashed
lines) and somatic (solid lines) membrane potentials during the gplicaion of the test
EPSP (arrow) with (lower traces) and without (upper traces) inhibitory input are shown.
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FIG. 5. Effed of inhibition on firing rate of synapticaly adivated model layer 2 pyramid.
(A) Adapting train of adion potentials produced by 70 excitatory inputs adive & a mean
frequency of 200 Hz. (B) Firing rate of model as a function of the firing rate of its 70
excitatory inputs. | = Initial, pe& firing rate. G = Stealy, adapted firing rate. Solid traces
are results without inhibition. Dashed traces are results with 33 additional, inhibitory
synapses firing at 100Hz. This level of inhibition hes little dfed on the strongly adivated
pyramid. Dotted traces are results with the firing rate of the inhibitory inputs equal to
twice that of the ecitatory inputs in ead case. This more redistic level of inhibition
causes a dgnificant deaease in the firing rate of the pyramid, although firing is not
completely suppressed. (C) Firing is completely suppressed when an additional 150
somatic inhibitory inputs, starting firing at a mean frequency of 400Hz & t = 100 ms, are
added to the simulation shownAn
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FIG 6. Deaease in input resistance of model layer 2 pyramidal cdl during synaptic
adivation. At 100ms, 70 excitatory synapses and 33inhibitory synapses were adivated at
200 Hz and 400Hz, respedively. Upper traceis current injeded into model soma (-0.3
nA ead 30 ms pulse, to conform with protocol of Berman et al. (1991)), lower traceis
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voltage response of model. Size of voltage defledion to ead pulse gives measure of input
resistance of cdl. Voltage defledion is sgnificantly smaller during synaptic adivation (last
4 puses) than at rest (first pulse). Deaease in input resistance is adualy larger than
measured here, because cdl is not fully charged by the pulse & rest but is fully charged by
the pulses during synaptic adivation. Thisis due to the cdl’s snaler time constant during
synaptic adivation. Data in Table 2 is cdculated using the red (steady-state) input
resistance of the cell.



TABLE 1 Parameters for actiw®nductances

Channel

Na(m)
Na(h)
Kd
Ca

Kca

Er
(mV)
45

-90
N/A
-90

g
(mS/cn?)
40

30
0.6
10

z

4.3
-6
3

6

g %’m

0.7 4.2
05 0.2
0.7 0.03
0.7 1

Vi

-38
-42
-35
-15
see text

tmin T
(ms) (°C)
0.05 37
0.5 37
1.0 24
0.1 37

5

N SNV
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TABLE 2 Percentage Decrease i Buring concurrent synaptic excitation and inhibition

Rm(kQcn¥) S
Input firing 50
rate (Hz)

Ri(Qcm)

70 16.0
200 15.3

500 15.1

5

400

41.5
39.2
37.6

20

50

42.3
45.5
39.5

20

400

74.2
72.6
70.0

100

50

82.6
78.1
80.0

100

400

94.2
91.9
91.8



CHAPTER 111

Reduced Compartmental Models of Neocortical Pyramidal Cells

Abstract

Model neurons composed of hundreds of compartments are aurrently used for
studying phenomena & the level of the single cdl. Large network simulations require a
simplified model of a single neuron that retains the eledrotonic and synaptic integrative
properties of the red cdl. We introduce a method for reducing the number of
compartments of neocorticd pyramidal neuron models (from 400 to 8-9 compartments)
through a smple mllapsing method based on conserving the aia resistance rather than
the surface aeaof the dendritic tree The reduced models retain the general morphology
of the pyramidal cdls on which they are based, allowing the acacrate positioning of
synaptic inputs and ionic conductances on individual model cdls, as well as the
construction of spatially acairate network models. The reduced models run significantly

faster than the full models, yet faithfully reproduce their electrical responses.

Introduction

56
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Compartmental computer models have been used to investigate many aspeds of
single neurons, including passve properties (Rall 1964 Shelton 1985, the role of adive
conductances in producing observed firing behavior (Yamada & al. 1989 Bush and
Sejnowski 1997), and synaptic integration (Rall 1967, Shepherd et a. 1985 Fleshman et
al. 1988 Clements and Redman 1989 Bernander et al. 1991, Lytton and Sejnowski 1991,
Segev et a. 1992 Bush and Sejnowski 1992. The models used in these studies contain
hundreds of compartments and thousands of coupled dfferential equations must be solved
ead time step. To speed upsimulations, model networks use smplified representations of
the single neurons that comprise the network.

Most model neurons composed of just a few compartments have been assgned a
somewhat arbitrary geometry, with no systematic testing of the reduced model against the
red cdl or a more complete model (Wilson and Bower 1989 Traub 1982 Lytton and
Sejnowski 1991 Wehmeler et al. 1989. Such models may have the same input resistance
(Rin) and membrane time anstant (ty) as the red cdl, but typicdly will not acarately
simulate the integration of synaptic inputs in the dendritic compartments and the resulting
flow of current into the soma. Recent experimental and theoreticd evidence indicates that
the eledrotonic structure of corticd neurons causes sgnificant nonlineaities in the
integration of synaptic input (Ferster and Jagadeesh 1991, Ferster and Jagadeesh 1992
Bush and Sejnowski 1992. It is gill an open question as to whether such effeds are
important at the level of network function, but it would be prudent to ensure that a
simplified model neuron destined for network smulation is an as acairate representation
of the real cell as possible.

An example of a smplified model neuron that does retain the eledrotonic
charaderistics of the full model is the 'cartoon representation’ developed by Stratford et al.

(1989. Thisisamodel of a articd pyramidal cdl reduced to 24 compartments by using a



5C

number of mathematicd transformations to collapse the basal and apicd dendritic trees
into equivalent profiles, then collapsing all the oblique dendrites (lateral branches from the
apicd trunk) that are & the same eledrotonic distance from the soma. Stratford et al.
demonstrated that the catoon model isagood fit to the full model in terms of its response
to transient current injedions at different locaions as well as displaying the same Rj, and
Tm. We have combined this approadh with a smpler method to construct an aternative
cartoon representation that allowed us to achieve fewer compartments yet retain acarate

electrical properties.

M ethods

Simulations were performed using standard techniques for compartmental models
of branching dendritic trees (Rall 1964; two digitized HRP-filled pyramidal cdls from ca
visual cortex (layers 2 and 5) (Koch et a. 1990 were modeled, eat consisting of coupled
cylindricd compartments containing only resistive and cgpadtative dements. The full
models against which the reduced models were tested had approximately 400
compartments (Fig 1A), and have been used in a number of previous gudies (Koch et al.
199Q Lytton and Sejnowski 1991, Bernander et al. 1991, Bush and Sejnowski 1992). The
simulator CABLE (Hines 1989, running on a MIPS Magnum 300033, required about 1
minute of computation to simulate 100 ms of red time for the full models. The reduced
models ran approximately 5 times faster in smulations that included a full set of voltage-

andligand-gatecconductances.

Model parameters
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The hoice of values for the passve parameters (spedfic membrane resistance, Ry,
spedfic membrane cgadtance, Cy, and axial resistivity, R;j) for pyramidal cdls has
recantly been discussed (Bush and Sginowski 1992). Following that study, we used Cy, =
1 puFlem? (Jack et a. 1979, Rj = 200 Qcm (Bernander et al. 1991, Shelton 1985
Stratford et al. 1989 Segev et . 1992 and Ry, = 20 000Qcm?. This value for Ry, is the
effedive spedfic membrane resistance for an in vivo neocorticd pyramidal neuron
recaving badground synaptic input from spontaneously adive neurons (Barrett and Cirill
1974 Bernander et al. 1997). These passve parameters produced Rjn's for the model layer
5 and layer 2 pyramidal cdls of 45 MQ and 110MQ, respedively and a Ty of 20 ms.
These values are within the range recorded from celsin ca visual cortex in vivo (Douglas
et al. 1991Pei et al. 1991Ferster andagadeesh 1992).

The inclusion of spines in a passve model may significantly increase the membrane
areaof the cdl (Stratford et al. 1989 Segev et a. 1992. A receit cdculation has $rown
that the aldition of the membrane aea of 4000 spines to our layer 5 pyramidal cell
increases the aeaby about 7.5% (Bernander et al. 1992. This can be acounted for in a
model by increasing Cyy and proportionally deaeasing Ry (Holmes 1989. Our values for
Rm and Cry, are onstrained by measurements of Rjn, and T, and are not based on dired
measurement. Thus, if we assume that adding spines increases the membrane aeaof our
pyramidal cdls by, for example, 20%, we revise our estimate of R, to 24 kQcm? and our
estimate of Cy to 0.8 pF/cm?. These values are then deaeased and increased,
respedively, to acount for spine membrane, producing the values that we use in our
model. We have found very little difference between results obtained with excitatory
synaptic inputs on the heads of explicitly modeled spines as opposed to those obtained
with inputs made diredly onto dendritic shafts (Bush and Sgjnowski 1992). Thus, in these

simulations synaptic inputs were made directly a®ndritic shafts.
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Excitatory and inhibitory postsynaptic potentials (EPSF and IPSF) in our models
were simulated as alpha function conductance danges with a pea&k amplitude of 0.5 nS
and a time to pe&k of 1 ms (Ral 1967 Bernander et al. 1991). These parameters were
chosen becaise they produced EPSP at the soma with the same time @urse and
amplitude & those observed experimentally (Mason et a. 1991, Thomson et a. 1988.
The reversal potential for EPSFEs was 0 mV and the reversal potential for IPSF was -70
mV (Connors et al. 1988 McCormick 1989. Trains of EPSP or IPSP were modeled
according to a Poisson distribution with a fixed mean frequency of activation.

For some smulations, adive conductances were placel at the soma to generate
adapting trains of adion potentials, as observed in regular-firing corticd neurons
(McCormick et a. 1985. The conductances followed Hodgkin-Huxley-like kinetics based
on parameters developed by Borg-Graham (1987). The implementation was exadly as
described in Bush and Sejnowski (1992).

Reduceccompartmental models

When reducing a compartmental model to one with fewer compartments, Ry, Cmy
and R;j should be preserved so that the reduced model will have same the same Rin, Tm and
length constant, A, as the full model. Pyramidal cedls do not obey Rall's constraints for
collapse into asingle equivalent cylinder (Stratford et a. 1989 Douglas and Martin 1991),
so other approacdhes must be tried. Surface aea(hence Ry and Cryy) can be mnserved by
constructing an ‘equivalent dendritic profile' (Fleshman et al. 1988 Clements and Redman
1989 Stratford et al. 1989 Manor et al. 1991). In this technique the sum of the diameters
to the 3/2 power of al the dendrites at regular intervals from the soma ae used to
compute the diameter of an equivalent dendrite. The length of the eguivalent dendrite
must also be scded appropriately. As siown by Stratford et al., the equivalent profile has
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the same Rip, and try, as the full model but the degreeof attenuation of synaptic input along
the length of the gicd dendrite is not large enough. Thisis becaise the acial resistance of
the eguivalent profile is not equal to the acial resistance of the goicd dendrite, due to the
lumping of the oblique dendrites into the profile. The catoon model developed by
Stratford et al. (1989 solved this problem by explicitly representing the oblique dendrites
assidebranches from the apical trunk.

An alternative gproach to the catoon representation is a llapsing technique
based on conserving R; rather than the membrane surface aea This is done by making the
crosssediona areaof the equivalent cylinder equal to the sum of the aosssedional areas

of all the dendrites represented by that equivalent cylinder:
R=. /Z r?
(1)

Where R is the radius of the eguivalent cylinder and r; is the radius of dendrite i. The
length of the eguivalent cylinder is just the average length of all the dendrites represented
by the equivalent cylinder.

We have gplied this collapsing technique to creade anew reduced pyramidal cdl
model. First, all dendrites with approximately the same origin and (eledrotonic) length are
collapsed into a single equivalent cable. Thus, all the preterminal basal dendritic segments
(Larkman 1991a) were ollapsed together into an equivalent cylinder, as were dl the
terminal basal dendritic segments. The distal apicd dendritic aborization was also
collapsed together. The main apicd dendrite was reduced to 2 or 3 equivaent cylinders.
To insure the rred attenuation along the gicd dendrite, the oblique dendrites were
represented as a single sidebranch from the gicd trunk. Some fine tuning of the structure
obtained using this method was required; in particular we found it necessary to use two

paired basal dendritic compartments rather than one. This was to ensure alarge exough
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dendritic load on the soma while maintaining the crred attenuation from dendrites to

soma: A single large-diameter cylinder does not show grea enough attenuation of

synaptic input. The somatic compartment had the same dimensions as in the full model.
The surface a@eas of our reduced models are less than those of the full models.

Thus the next step in the reduction was to scde the values used for Ry, and Cp
appropriately. Rj was conserved, so Ry could be dhanged until the reduced model had the
same Rip as the full model. We found that Ry, had to be reduced by 2.84 times to match
the Rin of the reduced layer 5 cdl model with that of the full layer 5 cdl model. Ry, had to
be reduced by 2.95 times to match the Rj, of the reduced layer 2 cdl model with that of
its full model. C;y must then be multiplied by this sding fador to match ty, of the
reduced cdl to that of the full cdl. This procedure is a wrredion for the reduction in
surface aeg and indee if an approximate cdculation of the ratio of the aeas of the full
and reduced layer 5 cdl mode is made by summing up the aeas of al the glindricd
compartments in eatcy model, a value of 2.74 is obtained, which is quite dose to the
empiricd scding fador of 2.84. The dimensions of the reduced models are given in Table
1.

Our collapsing method is smpler than that of Stratford et a. and allowed us to
produce accrate models composed of lessthan 10 compartments. In addition, the lengths
of our equivalent dendrites were equal to the average lengths of the dendrites which they
represent. This is important when incorporating these models into spatidly acarate
networks.

Our method takes advantage of some of the morphologicd feaures of neocortica
pyramidal cdls. All the dendrites collapsed together into an equivalent cylinder have
approximately equal lengths and diameters, as well as equivalent eledrotonic origins. It
should be possble to construct similar models of other types of neurons using our method

if their dendritic morphologies display these features.
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The geometries of the reduced model layer 2 and layer 5 pyramidal cdls are shown
in Fig. 1B. Drawings of the HRP-filled pyramidal cdls are included for comparison (Fig.
1A). In order to assessthe acaragy of the method that produced the reduced models, we
compared the responses of the reduced and full models to different types of stimulation.
The response of the reduced and the full model layer 5 pyramid to a @ntinuous matic

current injedion of -0.7 nA are mmpared in Fig. 2A. The superposition of the two traces

shows that both models have the same Ri and . It is relatively easy to match these
parameters by tuning Rm and Cpy. Such a match says little @dout how faithfully the
reduced model captures the synaptic integration properties of the full model (Fleshman et
al. 1989. The responses of the reduced and the full model layer 2 pyramid to a brief
somatic aurrent injedion are compared in Fig. 2B (Stratford et al. 1989 Shelton 1985.
The response to a transent somatic input is dependent on Rj as well as Ry, and Cp,
becauise it is dependent on how fast current moves from the soma into the dendrites. The
response of the reduced model is a good fit to that of the full model. The responses of
both models to an EPSPon the soma, with 0.5 nS pe& conductance ae mmpared in Fig.
2C. Thistests esentialy the same properties as the brief current pulse; the performance of
the reduced model is very close to that of the full model.

Fig. 3A shows the firing of the full 400 compartment layer 5 cdl in response to a
maintained A somatic current injection. The
model cdl produced an adapting spike train typicd of the regular-firing class of corticd
pyramidal cells (McCormick et al. 1985). The
conductances underlying this firing behavior, locaed in the soma only, were put into the 9

compartment model without changing a single parameter. Because both models have the
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same somatic dimensions, the same cnductance densities were used in both. Fig. 3B
shows the firing of the 9 compartment model in response to a 1 NA somatic aurrent
injedion. The response of the reduced model has the same form as that of the full model
— an adapting train of adion potentials. The firing frequency of the reduced model was
dightly higher, but the small difference was within the limits of uncertainty of the model
parameters as well as the variance in response recorded aaoss different pyramidal cdls
(McCormick et al. 1985, Douglas et al. 1991).

The final test was to compare the response of both models to synaptic input. To
produce the same output as the full model, the reduced model must perform the same
nonlinea integration of dendritic EPSF and IPSP as the full model (Bush and Sejnowski
1992, and dsplay the same dendrites-to-soma transfer charaderistics. In other words, the
reduced model must have the same input-output function as the full model.

A majority (70-90%) of excitatory inputs to corticd pyramidal cels are made on
the basal/oblique dendrites (Larkman 1991b). We distributed synapses on the dendrites
and soma to refled these measurements. Thus, 140 excitatory synapses were placel
randomly on the basal and oblique dendrites of the full model and 140 on the 1
oblique and 2 basal equivalent dendrites of the reduced model. In addition, 33 inhibitory
synapses were placed on the proximal
dendrites and 12 on the soma of ead model, a pattern of innervation charaderistic of
basket cdls, the most common inhibitory cdl type in cortex (Martin 1988. Inhibitory
(smooth) cdls fire & much higher rates than pyramidal cdls (McCormick et al. 1985,
therefore inhibitory synapses were adivated at a mean frequency twice that of the
excitatory synapses. Fig. 3C shows the responses of the full and reduced models for the
pedk (initial) and stealy-state (adapted) firing rates as a function of the frequency of the

excitatory inputs. The fit is close for all input frequencies, demonstrating that the reduced
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model shows about the same dendritic integration charaderistics and response to

inhibition as the full model, despite having an extremely simplified structure.

Discussion

Given current computational limitations, smulation of a large, redistic network
requires a model cdl with a minimal number of compartments. The reduced pyramidal cdl
model presented here is a good fit to the full model for a variety of stimuli (Figs. 2 and 3),
and is sutable for network simulations involving multiple, spatially-separated synaptic
inputs to the neurons.

The Rjp of an equivalent dendrite of the reduced model is not as large & the R, of
one of the dendrites represented by the equivalent dendrite. Hence, a single EPSPon an
equivalent dendrite of the reduced model is not equivalent to a single EPSPon a single
dendrite of the full model. Rather it would be ejuivalent to dividing the EPSP and
applying one fradion to ead of the red dendrites represented by the eguivalent dendrite.
Thus, the reduced model is not appropriate for studying the dfed of single synaptic inputs
on single dendritic branches of pyramidal cdls or locd dendritic processng in general. For
example, we would not use this reduced model to investigate dustering of individual
synaptic inputs or the inhibitory control of spedfic dendrites. Such studies must use more
detailed models that represent ead processof the neuron explicitly. However, we found
that the membrane potential of the basal dendrites of the reduced model was equal to the
mean potential of the basal dendrites of the full model during multiple synaptic adivation
(eg. Fig. 3C), giving us me onfidence that the voltage-dependent processes (such as
NMDA) occurring in the dendrites (as well as the soma) during multiple synaptic

activation could be accurately simulated with the reduced model.
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FIG. 1. A) Drawings of remnstructed HRP-filled layer 2 (right) and layer 5 (left)
pyramidal cdls. B) Geometries of reduced pyramidal cdl models (see Table 1 for lengths
and diameters of each compartment).



64

BEES T

Wi Y]

_1dB L 2 L 1 |
a9 aq 1=0 1@ a9
Ylme {mx)

o

Log W {m)
& &
woo& -
T T 1

nl
Ln

L . L |
[+] = ik iE -4 25
Timm (msp

-Fd 4 -

-&4.6 |

Ve i

CL-E -

-85 L L L L |
0 = 10 1= 3 1] 25 =R )
Tima [me}

FIG. 2. Comparison of the response of the reduced (R) and full (F) models to somatic
input. A) Voltage response & the soma of reduced and full layer 5 pyramid models to
constant current injedion of -0.7 nA. The superposition of the two traces indicaes that
both models have the same Rj, and tm. B) Semi-log plot of voltage response of reduced
and full layer 2 models to a 0.44 ms 0.3 nA somatic current injedion at t = 5 ms. C)
Voltage response of both layer 2 models to a 0.5 nS somatic EPSP The dose fit of the
reduced model with the full model to these transient inputs indicates that the dendrites
conduct charge away from the soma at the same rate in both models.
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FIG. 3. Comparison of firing responses of reduced and full model layer 5 pyramidal cdl.
The somata of both models contain adive conductances with exadly the same kinetics and
densities. A) Adapting spike train of full model in response to constant 1 nA somatic
current pulse. B) Spike train of reduced model in response to same stimulus. The response
of the reduced model is of the same form as that of the full cdl, but the firing frequency is
dightly higher. C) Firing rate of full (solid traces) and reduced (dashed traces) models as a
function of the firing rate of their 140 excitatory inputs. Each model also receves 45
inhibitory synapses, adive & twicethe rate of the excitatory ones. | = Initial, pe& firing
rate. G= Stealy, adapted firing rate. The dose fit of the two models demonstrates that the
reduced model integrates excitatory and inhibitory synaptic input in the same manner as

the full model.



TABLE 1 Dimensions of reduced models

Layer 5 pyramid

lengthim) diameter{m)

soma 23 17
apical trunk 60 6
obliques 150 3
apical #1 400 4.4
apical #2 400 2.9
apical tuft 250 2
basal trunk 50 4

basals (2) 150 5
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Layer 2 pyramid

length{m) diametenr§m)

21 15.3

35 2.5
200 2.3
180 2.4
140 2

50 2.5
150 1.6



CHAPTER IV

Synchronization of bursting action potential dischargein a model network of

neocortical neurons

Abstract

We have used the morphology derived from single horse radish peroxidase-labelled
neurons, known membrane nductance properties and microanatomy to construct a
model neocorticd network that exhibits g/nchronized bursting. The network was
composed of interconneded pyramidal (excitatory) neurons with different intrinsic burst
frequencies, and smooth (inhibitory) neurons that provided gobal feedbad inhibition to
al of the pyramids. When the network was adivated by geniculocorticd afferents the
burst discharges of the pyramids quickly became synchronized with zero average phase-
shift. The synchronization was grongly dependent on global feadbadk inhibition, which
aded to group the co-adivated bursts generated by intracorticd re-excitation. Our results
suggest that the synchronized bursting observed between corticd neurons responding to
coherent visual stimuli is a smple @nsequence of the principles of intra-corticd

connectivity.

77
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Introduction

Recently there have been a number of reports that neurons in the visual cortex that
respond to related feaures in the visual scene tend to synchronize their adion potential
discharge (Gray and Singer, 1989 Gray et a., 1990 Engdl et a., 1990. This finding has
attraded considerable dtention becaise it may refled a processwhereby the @rtex binds
coherent visual feaures into objeds (Crick, 1984 von der Masburg and Schreider,
1986. Typicdly, the synchronizaion is observed between reurons that have Complex
receptive field responses, and that have bursting rather than regular (Connors et a., 1982
discharge patterns. Theoreticd anayses (Kammen et a., 1990 and smulations of
connedionist networks (Sporns et al., 1989 have examined the conditions required for
coherent neural adivity but the detailed neuronal medanism of synchronization has not
been studied. In this paper we aldressthis problem using a network of corticd neurons

with realistic morphology and excitability.

Model Cortical Network

The network was composed of model pyramidal and smocth cortica neurons.
Eadh neuron was represented by a compartmental model that consisted of a series of
cylindricd dendritic segments and an €llipsoidal soma (Figure 1a,b). The dimensions of
these compartments were obtained by simplificaion of the detailed morphology of a
pyramidal neuron and a basket neuron that had been intracdlularly labelled with
horseradish peroxidase (Dougdlas and Martin, 1990g). Eac of the cmpartments contained

an appropriate profile of passve, voltage-dependent, cacium-dependent, and synaptic
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conductances. Active conductances had Hodgkin-Huxley-like dynamics, except that time
constants were independent of voltage. Passve properties of the model cdl were obtained
from intracdlular recordings made in the red cdl. The magnitudes and dynamics of the
conductances, and the implementation of the compartmental simulation were similar to
that described elsewhere in the literature (Traub et al., 1987 Getting, 1989 Douglas and
Martin 1990a). The relevant parameters are listed in Table 1.

The oorticd network consisted of ten bursting pyramidal neurons and one basket

neuron (Figure 1c). The bursting behaviour of the pyramids was dependent on a small,
transient delayed redifier (ng) and a large cdcium-dependent potassum conductance

(gKCa)' The reduced spike afterhyperpolarization that resulted from a small fast I g
encouraged a high frequency burst of adion potentials and rapid acamulation of
intracdlular cacium. The burst was terminated by the hyperpolarization induced by ICa
The inter-burst interval depended on the rate of cdcium remova (buffering) from the
intracdlular compartment. Each of the ten pyramidal cdls was assgned a slightly different
intracdlular cdcium decay rate so that their natural burst frequencies ranged between 18
and 37Hz for a 1nA intra-somatic current injedion. The adive conductances were locaed
in the somatic compartment. Smooth cdls have shorter spike durations, higher discharge
rates, and show lessadaptation than regular firing pyramidal cdls (Connors et al., 1982.
These dharaderistics were adieved in the model smooth cdl by retaining only the spike
conductances,l\ga and K both of which were large and fast.

Eadh reuron represented the adivity of a population of neurons of that type. The
adivities of these populations were measured as their average adion potential discharge
rates. The individual spikes of the representative neurons were used to estimate the
average discharge rates of their respedive populations. This was done by convolving eat
of the spikes of the representative neuron with a gamma interspike interval distribution.

The shape parameter of the distribution was held constant (0=2). The mean interspike
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interval of the distribution was defined as the previous interspike interval of the
representative neuron. Thus the interspike interval distribution becane more wmpad at
higher discharge frequencies. The lateral geniculate input to the pyramidal cdls was
modelled as a ontinuous discharge rate. The form of the input was a step-like function,
and in some cases a noise component was added (Figure 4b).

The synaptic efed of a given population on its target neuron was computed from
the average population discharge rate, maximum synaptic conductance, and synaptic
conductance time-constants (Table 1). The distributions of inputs from various ources
onto visual corticd cdls are not acarrately known. However, both asymmetric and
symmetric synapses tend to cluster on the proximal dendrites of corticd neurons (White,
1989, and so in this smplified model we asgned all contads to the proximal basal
dendrites. We asumed that one excitatory synaptic input would contribute asomatic epsp
with a pe&k amplitude of about 10QuV. Thus, roughly 200 synchronous inputs are
required to drive the post-synaptic cdl to threshold, and about 600 to reaty maximum
discharge. In preliminary simulations we @nfirmed that this range of inputs could
effedively drive a postsynaptic neuron if the maximum single synapse excitatory
conductance was st to about 0.5nS. This and al other maximum synaptic conductances
were determined at a presynaptic discharge rate of 300spikes/s. Anatomicd studies
indicate (for review of neocorticd circuitry seeMartin, 1988 Douglas and Martin, 199(b)
that any particular cortica pyramid makes only about 1 contad with its post-synaptic
target. This means that a reasonable size for the co-adivating population is about 600
pyramids, which is about 10% of the total excitatory input to a typicd pyramidal cdl. In
the final smulations the population of 600 p/ramidal cdls comprised 10 subpopulations of
60 neurons, each population having a different characteristic burst frequency.

Eadh single thalamic dferent supgies only about 1 synapse to any single post-
synaptic neuron. We found that the input of about 40-80 such LGN afferents was suitable
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for adivating the network, if the maximum single thalamic synaptic conductance was also
set to about 0.5nS. This number of cdls represents roughly 10% of the total number of
LGN contacts received by a pyramidal neuron.

The inhibitory population consisted of 100 neurons, ead of which made 5
synapses onto ead pyramidal target. The maximum single inhibitory synaptic conductance
was 1nS.

The model network was smulated using the program CANON (written in
TurboPascd by RJD, Douglas and Martin, 1990a), which exeautes on an AT-type
microcomputer running under DOS. Simulation of 1 second of model time required about

3 hours of computation on a 16MHz 286AT.

Results and Discussion

Our initial smulations examined the bursting behaviour of pyramidal populations in
the dsence of either excitatory or inhibitory intracorticd connedions (Figure 2a,b). All of
the pyramidal populations receved the same @nstant thalamic input (Figure 4b, half
amplitude of dashed tracg. As anticipated, ead of the pyramidal populations displayed
bursting adivity, and their burst frequencies differed acwrding to their intrinsic
charaderistics. For example, the daraderistic burst frequencies of the two cdls $own in
Figure 2a,b were 22Hz and 37z respedively when they were stimulated dredly using an
1nA intra-somatic current injedion. The same two pyramids displayed burst frequencies of
9Hz and 15Hz when adivated by this particular geniculate input, and these frequencies are
refleded in their power spedra (Figure 2ab adjaceit to voltage traces). The adoss
correlation between these two cdls (Figure 2e, upper trace has very little power nea zero

time, confirming the lack of burst synchronization apparent from the time traces.



73

Introduction of excitatory intracorticd connedions between the pyramidal
populations did not improve synchronizaion. On the ntrary, the intracorticd re-
excitation implicit in these wnredions drove dl of the pyramids to very high discharge
rates (Compare time traces and power spedra of Figure 2ab with c,d). The higher
frequency intrinsic bursters fired continuoudy (Figure 2d). The adosscorrelations between
pyramids confirmed the lack of synchronization (Figure 2e, lower trace; no zero peak).

Introduction of a cmmon inhibitory population (Figure 1c) led to a marked
improvement in synchronizaion of pyramidal burst discharges (compare Figure 3a,b with
Figure 2a-d). This is refleded in the marked increase in the zeo pe& of the aoss
correlation (Figure 3d). Comparison of the power spedra of the synchronized cdls
(Figure 3 a,b) with their uncoupled, un-inhibited counterparts (Figure 2 a,b) shows that
the synchronization processforces neurons with quite different burst frequencies (9Hz and
15Hz in these examples) towards a common burst frequency (averaging 17z in this
example). The excitatory connedions between the pyramidal populations provide astrong
intra-corticd excitatory component that combines with the geniculate input (Douglas and
Martin, 199Q1). This enhanced average excitation rapidly initiates global bursting, while
the common inhibitory feadbad truncates the bursts that occur in ead population and so
improves the synchronization of subsequent burst cycles.

The synchronization of bursts is more robust than the periodicity of the bursts
(Figure 3,4). This explains why the aosscorrelations have a prominent zero pedk, but
relatively small side lobes. The inter-burst interval is dependent on both the post-burst
hyperpolarization, and the strength of inhibition from the inhibitory population. The latter
is in turn dependent on the average size of the previous burst in al the pyramids. This
complex interdependence between events in many cdls causes the interburst interval
within a particular population to vary chaoticdly, even in the presence of constant

thalamic input. This behaviour is very smilar to that seen in red corticd neurons. For
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example, compare the response of the model pyramids (Figure 3ab 4a,.c) with the
intracdlular signal derived from a red Complex cdl during presentation of a preferred
visual stimulus (Figure 3c). This in vivo rearding was made in a layer 3 neuron of ca
primary visual cortex (Douglas and Martin, unpublished).

Figure 4 shows the results of a smulation in which noise was added to the output
of the geniculate populations. Comparison of Figure 4a,c with Figure 3ab and the
presence of a strong pe& at zero time in the aosscorrelation (Figure 4e, upper trace
indicate that burst synchronizaion was remarkably resistant to the noise superimposed on
the geniculate input. The higher average burst frequency (23Hz) compared with the noise-
free case (17Hz) (Figure 3a,b) is due to a laggeiculate signal.

The synchronization evolved rapidly, and was well established within about 100ms
(2 bursts) of the onset of the pyramidal response. No particular population leal the
bursting of the network. Instead the phase relations between any two populations changed
chaoticdly from cycle to cycle so that the average phase between the cdls remained zero
(Figure 4, crosscorrelation), asis eninvivo (Engel et a., 1990. The onset of discharge
in the inhibitory population necessarily lags behind the onset of the ealiest bursts in
pyramidal populations. However, the onset of inhibitory discharge occurred within about
5ms of the onset of the ealiest pyramidal bursts and before the onset of the latest burst.
Thus, we do not exped that the phase shift of inhibitory cdls with resped to pyramidal
cells will be easy to detect experimentally.

We found that the performance of the model was rather insensitive to the detailed
cdlular organizaion of the network as gedfied by the number of cdls per population,
number of synaptic contads and magnitude of synaptic efed. The aucia organizational
principle was the presence of corticd re-excitation and adequate global feedbadk
inhibition. Evidence for these drcuits has been found in intracdlular recordings from cat

visual cortex (Douglas and Martin, 199(). This finding is consistent with the
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mathematica proof of Kammen et a. (1990 that a number of oscillatory units driving a
common feedbadk comparator can converge to a common oscill atory solution. However,
our results indicate that synchronization occurs even in the presence of chaotic bursting
discharge, when oscillation is not a prominent feaure. Our results bea a qualitative
similarity to those of Traub et al. (1987). The main differenceis that in the cae presented
here fast, concentrated inhibition produces tightly coherent, high frequency (20Hz rather
than 2-3Hz) bursting across the pyramidal populations.

Much has been written receitly concerning oscillations in the neocortex.
However, burst synchronization is the most compelling feaure of our model corticd
network. The inter-burst intervals were not regular, instead they varied chaoticdly.
Consequently the power spedra of the discharges were broad, as has been noted in vivo
(Freeman and van Dijk, 1987). Synchronous bursts from large populations converging on
a postsynaptic target cdl will produce very large transient depolarizations, which would be
optimal for adivating NMDA recetors. This suggests the posshility that leaning occurs
at times of synchronizaion. Coherent bursting may permit seledive enhancement of
synapses of common target neurons. If al inputs to the target cdl are bursting rather than
constant the dances of false correlations between different coherent populations are
reduced. Moreover, varied interburst intervals could help to avoid phase locking between

different sets of rhythmic signals impinging on the common target.

Conclusion

Our results suggest that the synchronized bursting observed in vivo between

corticd neurons responding to coherent visua stimuli is a smple @nsequence of the

known principles of intra-corticd conredivity. Two principles are involved. Firstly, intra-
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corticd re-excitation by pyramidal collaterals amplifies the geniculate input signal and
drives the co-adivating pyramidal cdls into strong coherent discharge. Secondly, global
feadbadk inhibition converts the integrated burst discharges into a global reset signal that
synchronizes the onset of the subsequent cycle in all the bursting pyramidal cdls. Future
work must investigate the processes that dynamicdly conned and dsconned populations
of neurons to form coherent networks, the dements of which are then synchronized by the

mechanisms outlined in this paper.
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Figure 1: (&) Layer 5 pyramidal cdl from ca primary visual cortex intracdlularly labelled
with HRP and reconstructed in 3 dmensions (Douglas and Martin, 199Qg). (b) Smplified
compartmental model of the pyramidal cdl. (c) Corticd network composed of model
neurons. Each of ten populations (4 shown as redangular boxes) composed of pyramidal
cdls (filled shapes) recaves input from the LGN. Eadh pyramida population sends
afferents to al nine other pyramidal populations, and also to the common smooth cel
population (box containing open stellate shape). The smooth cdl population feals badk to
all ten pyramidal populations.
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Figure 2: Response of partially conneded model network to constant thalamic input (half
amplitude of dashed tracein Figure 4b). In this and following Figures : power spedra ae
shown to the right of time traces; crosscorrelations are shown at the foot of the figure;
the anplitudes of the corticad power spedra ae dl to the same abitrary scde, the LGN
spedra (Figure 4b,d) are to a separate scde. (a) Pyramida cdl with no intra-cortica
conredions bursts rhythmicdly at 9Hz (fundamental frequency in adjacent power
spedrum of voltage tracg. (b) A different cdl oscillates at 15Hz to same input. Cross
correlation of the output of these two cdls (e, upper trace exhibits no pe& at zero time,
indicating no correlation between these two signals. () Response of the same model cdl
asin a, but now including redprocd excitatory connedions to al 9 other populations. The
consequent enhanced excitation results in higher frequency discharge (50-60Hz, see
adjacent power spedrum). (d) Enhanced excitation causes the intrinsicaly higher
frequency cdl shown in b to latch up into continuous discharge. In this example dl the
power is at 200-300Hz, which is off-scde. Cross correlation of latter two traces (lower
trace in e) indicates that their discharge is not synchronized.
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Figure 3: Response of fully conneded model network to constant thalamic input (half
amplitude of dashed tracein 4b). (a,b) Response of same cdls sown in Figure 2a,c, but
now incorporating common fealdbad inhibition (Figure 1c). The bursts in the two
populations are synchronized, as indicated by the prominent zero pe&k in their cross
correlation (upper tracein d, for comparison lower traceis sme a Figure 1e). Their
common inter-burst frequency (17Hz) isrefleded in their power spedra. Notice that eat
cdl fires only in synchrony with the others. If a cdl misses a burst (arrowed in b) then it
fires again only on the next cycle. (c) Response of red complex cdl in cat primary visua
cortex to optimally orientated moving bar (Dougas and Martin, unpublished). Compare
with model responses in Figure 3b,c and Figure 4a,c. Note missedabrosted).
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Figure 4:  Synchronization is not dependent on identicd, constant thalamic input. In this
example five pyramidal populations were driven by LGN input shown in b, the other five
by input shown in d. Inputs are the sum of a @mnstant signal (dashed tracein b) plus noise
with 24% power of signal. Comparison of the outputs of the highest and lowest intrinsic
frequency cdls (a and c) show that the burst synchronization is not diminished by this
procedure. As in Figure 3, superposition of pegs of power spedra and prominent zero
pek on crosscorellogram (e, upper trace confirm synchronizaion of pyramidal
population discharges. The synchronization is lost if intracorticd connedions are removed
(e, lower tracg. Notice that the pegs of power spedra of LGN input (b and d) do not
coincide with those of the model output (a and c), indicaing that the corticd interburst
frequency (averaging 23Hz) is insensitive to the spectral characteristics of the LGN input.



Table 1. Model parameters

Pyramidal Cells:
resting potential
axial resistance

specific membrane capacitance

leak conductance
calcium decay time constant

spikeNa conductance

'm

Th
delayed rectifier K conductance

'm

persistentNa conductance

'm

calcium-dependent K conductance

'm

'‘A-current' K conductance

'm

Th
calcium conductance

'm

EPSP synaptic conductance (300s/s)
EPSPt

EPSPrh

IPSP synaptic conductance (300s/s)
IPSPTm

IPSPTh

Smooth Cells:
resting potential
axial resistance

specific membrane capacitance
leak conductance
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-66mV
200ohmcm

2|1F/cm2

0.1 mS/cn?
7-20ms

400ms/crf?
0.05ms

0.5ms

8oms/cn?
0.5ms

omS/enf
2ms

15mS/crf?
2ms

oms/enf
20ms
100ms
0.5mS/cn%
2ms

0.5nS
5ms

10ms

1nS
2ms

3ms

-66mV
100o0hmecm

2|1F/cm2
0.1 mS/cn?



spikeNa conductance

'm

Th
delayed rectifier K conductance

'm

EPSP synaptic conductance (300s/s)
EPSPt

EPSPrh

axon conduction delay + synaptic delay

700mS/crft
0.05ms

0.5ms

400mS/crft
0.2ms

0.5nS
0.1ms

0.1ms

2ms
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CHAPTER YV

Inhibition Synchronizes Spar sely Connected Cortical Neurons Within and Between

Columnsin Realistic Network M odels.

Abstract

Networks of compartmental model neurons were used to investigate the
biophysicd basis of the synchronization observed between sparsely-conneded neurons in
neocortex. A model of a single @lumn in layer 5 consisted of 100 model neurons: 80
pyramidal and 20 inhibitory. The pyramidal cdls had conductances that caused intrinsic
repetitive bursting at different frequencies when driven with the same input. When
conneded randomly with a cnnedion density of 10%, a single model column displayed
synchronous oscill atory adion potentials in response to stationary, uncorrelated Poison
spike-train inputs. Synchrony required a high ratio of inhibitory to excitatory synaptic
strength; the optimal ratio was 4:1, within the range observed in cortex. The synchrony
was insengitive to variation in amplitudes of postsynaptic potentials and synaptic delay
times, even when the mean synaptic delay times were varied over the range 1 to 7 ms.

Synchrony was found to be sensitive to the strength of redprocd inhibition between the

96
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inhibitory neurons in one lumn: Too we& or too strong redprocd inhibition degraded
intra-columnar synchrony. The only parameter that affeded the oscill ation frequency of
the network was the strength of the external driving input which could shift the frequency
between 35 to 60 Hz. The same results were obtained using a model column of 1000
neurons with a connection density of 5%, except that the oscillation became more regular.
Synchronization between corticad columns was gudied in a model consisting of
two columns with 100 model neurons ead. When connedions were made with a density
of 3% between the pyramidal cdls of ead column there was no inter-columnar synchrony
and in some caes the olumns oscillated 18® out of phase with ead other. Only when
connedions from the pyramidal cdls in ead column to the inhibitory cdls in the other
column were alded was g/nchrony between the @mlumns observed. This g/nchrony was
established within one or two cycles of the oscill ation and there was on average ze¢o ms
phase difference between the two columns. Unlike the intra-columnar synchronization, the
inter-columnar synchronization was found to be sensitive to the synaptic delay: A mean

delay of greater than 5 ms virtually abolished synchronization between columns.

Introduction

Although the traditiona role for inhibition hes been to regulate the level of
excitation, recent experimental and modeling studies suggest an additional function for
inhibition in cortex: Regulating the timing of adion potential occurrence (Gray et a.,
1992 Lytton & Sejnowski, 1991, Bush & Sejnowski, 1994). In this gudy, we eplore the
influence of inhibition on the tempora pattern of spike firing both within and between

columns consisting of small networks of sparsely connected model neurons.
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Synchronous oscill atory firing of populations of corticd neurons at frequencies
around 40 Hz has been observed within and between many different corticd areas in
primates and cas both awake and anaesthetized (for recant review see Singer (1993). It
has been proposed that this s/nchronous adivity is used to group separated perts of single
objeds (Engdl et a., 1991a; Sporns et al., 1997) and even signal visual awareness (Crick
& Koch, 1990. Although there is gill much debate & to the role and significance of
synchrony, it is generally agreed that many corticd neurons can fire synchronously under
some oonditions. Therefore, it is worthwhile to discover exadly how corticd tissue
generates and sustains g/nchronized oscill atory firing of its component neurons, both
within a single olumn and between columns that may be locaed in different hemispheres
(Engel et d., 1991b). For smplicity, we have restricted our model to a single layer of
cortex (layer 5). Slice experiments have shown that isolated layer 5 is cgpable of intrinsic
generation of oscill atory adivity, although at lower frequencies than those discussed here
(Slva @ a., 1991). It is possble that intrinsic bursting cels in vivo have significantly
higher bursting frequencies than those in vitro, and it is also possble that there ae other
populations of intrinsic bursting cdls with different intrinsic frequencies (McCormick et
al., 1993).

A number of other studies have modeled synchronized oscill ations in cortex at a
simpler level of physiologicd redism, many of them focusing on how such adivity might
be useful, for example in perceptual grouping (Koenig & Schillen, 1991 Sporns et al.,
1989. This gudy does not address the function of synchronization; instead we have
constructed a physiologicdly redistic network model based on ionic aurrents and
conductances, with every parameter diredly representing a physiologicd variable. We
intended to determine whether the presently available data on the physiology and
microanatomy of cortex are sufficient to explain how synchronized oscillatory firing

occurs and how certain physiologicd variables affed this adivity. We found both intra-
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and inter-columnar synchronization to be robust to changes in parameters known to have a
wide degree of variation in cortex. Some parameters did affed synchronizaion, such as
the degree of connectivity and the involvement and interaction of inhiloii@meurons.
A previous pilot study (Bush & Douglas, 1991, using a smplified biophysicd
model of a crticd column, established a basic medhanism for cortica synchronizaion to
arise. This model included a number of smplifications: It consisted of only 11 fully
conneded cdls and eat synapse had to be spread out in time a well as increased in
amplitude to compensate. One of the smplificaions led to an artifadua phenomenon
explained in the Discusson. The present model is a much more faithful smulation of a
pieceof corticd tisaue, incorporating a more redistic model reduced cdl, many more cdls,
sparse @nredivity and connedions between as well as within columns. This more
acarate model not only produced results that were better fits to the experimental data,
but also alowed us to determine systematicdly how and in what way ead physiologicd
variable affected synchronization, which was not possible with the simpler model.
We have dso modeled the interadions that occur between columns. When long-
range horizontal connedions between columns were first discovered in neocortex they
seamed to imply a paradox: These mwnnedions extended far beyond the receptive fields of
single cdls, yet stimulating the surrounding area outside the receptive fields of undriven
cdls was not effedive in driving them (Gilbert et al., 1990. This suggested that perhaps
these wnredions were relatively wedk, and indead the density of synaptic conredivity is
much higher within a clumn than between columns (Kisvarday & Eysel, 1992 Martin,
1988. Although excitatory postsynaptic potentials (EPSF) can be generated in neurons
when long range horizontal afferents are stimulated, it is not possble to generate adion
potentials by stimulating these fibers alone (Hirsch & Gilbert, 1991). This suggests that
these wnredions might have more of a modulatory role. We have used our model to

simulate inter-columnar connectivity to explore this possibility.
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M ethods

Model neurons

Simulations were performed using standard techniques for compartmental models
of branching dendritic trees (Rall, 1964). The primary neuron used in our networks was a
layer 5 pyramidal neuron modeled by 9 compartments. This model neuron was reduced
from a 400 compartment model of a reconstructed ca visual cortex pyramidal cdl (Koch
et a., 1990 using a method that preserves esential eledrotonic parameters (Bush &
Sejnowski, 1993. The reduced model pyramidal cdl had a spedfic membrane resistance
Rm = 7042Qcm? and a spedfic capadtance Cm = 2.84 p F/em? which produced an input
resistance Rin = 45 MQ and a membrane time constant Tm = 20 ms. Since gproximately
20% of neocorticd cdls are inhibitory (Douglas & Martin, 1990 20% of our cdls were 7
compartment inhibitory (basket) neurons (not based on a reconstructed cdl) with Cm =
221 p Flem2 and Rm = 6800 Qcm?2 giving an Rin = 164 MQ and Tm = 15 ms. The
values of Cm and Rm for the reduced cdls are respedively larger and smaller than for the
full cdlsto compensate for the reduction in surface @ea(Bush & Sejnowski, 1993. For
al model cdlsthe aia resistivity was 200 Qcm and the resting membrane potential was -
55 mV (‘resting’ assumes badkground synaptic adivity producing a stealy
depolarizaion). The values chosen for these passve parameters are within the typicd
range observed in neocorticd cdlsin vivo and are have been discussed elsawhere (Bush &
Sejnowski, 1994).

Eadh model neuron had Hodgkin-Huxley-type adive conductances at the soma

only. These conductances were implemented exadly as described in Bush & Sejnowski
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(1994, using a kinetic scheme developed by Borg-Graham (1987. The pyramida cdls
had fast sodium and potassum conductances (gNa + gk d) to produce ation potentials, a

fast high-threshold cacium conductance (gCg) to introduce cadcium into the ceél during
eathh spike, and a cdcium-dependent potassum conductance (gKcg to produce
hyperpolarizations that terminated bursts of spikes. Intracdlular cdcium acamulated in
the soma compartment and decayed exponentialy to its resting value with a time constant
that was different for eadt cdl, between 10-50 ms. The different cacium decgy rates gave
eadt pyramidal cdl a different intrinsic bursting frequency. The basket cdls had only fast
sodium and potassum conductances and fired continuous trains of high-frequency spikes
to constant current input. Fig. 1 shows the intrinsic firing properties of the model
pyramidal and baskets cells.

During network simulations noise was injeded into the soma of every model
neuron in the form of a arrent that changed every time step to a random number
uniformly distributed between positive ad negative 1 nA for pyramidal cdls and 0.3 nA
for basket cdls. This method produced a varying resting membrane potential smilar to
that seen in vivo due to badkground synaptic inputs, without changing Rin and tm. This
badground noise made synchronization more difficult and produced a badground resting

firing rate of a few Hz.

Synaptic connectivity

Synaptic conductances were modeled using an alpha function conductance dange
(1 ms to pe&) adivated on the postsynaptic dendrite with some delay after the
presynaptic spike (Bernander et al., 1991). Pesk amplitudes and synaptic delays for ead
connedion were randomly assgned acmrding to a gaussan distribution with a standard

deviation equal to haf the mean. This reproduced the large range of delays and
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postsynaptic potential (PSP amplitudes observed experimentally. The mean synaptic delay
time was 1.2 ms with a fixed minimum of 0.5 ms (Mason et a., 1991 Nicoll &
Blakemore, 1990. Mean pe&k PSP amplitudes were varied but were typicdly 1-2 nS
except for inhibitory synapses on pyramidal cdls, which were typicdly 4-8 nS. This
refleds the observations of (Komatsu et a., 1988 who found that single inhibitory
conductance danges were significantly larger than single excitatory ones. This may refled
the fad that basket cdls typicdly make multiple synaptic contads on the proximal
dendrites of atarget pyramidal cdl while pyramidal cdls only make one or a few contads
per target (Somogyi et a., 1983 Gabbot et a., 1987). The reversa potential for EPSP
was 0 mV and that for inhibitory postsynaptic potentials (IPSP) was -65 mV (10 mV
below the resting potentialConnors et al., 1988).

Excitatory synapses on model pyramidal cdls were made on the terminal basal and
oblique dendritic compartments, whereas inhibitory synapses were made onto the soma
and proxima dendrites. Excitatory and inhibitory synapses were made onto all
compartments of the basket cdls (Douglas & Martin, 1990. Pyramidal cdls receved
external driving input from uncorrelated Poison spike trains. Typicdly ead cdl receved
four 20 nS excitatory synapses adive & a mean rate of 200 Hz. This is equivalent to a
larger number of inputs active at a lower rate.

Conredivity within a single wlumn, at the scde of 100-200 4 m, appeas to be
random in the sense that axons make contads on all potential targets within their zone of
arborization (White, 1989. Thus, there was no spatial topography within our model
columns. Every cdl had an equal chance of contading every other cdl (but no self-
conredions were dlowed). The density of connedivity within a @lumn has been
estimated by dual intracdlular impalement and spike-triggered averaging to be 5-15%
(Mason et a., 1991, Thomson et a., 1988 Komatsu et al., 19898, although it may be
lower in the deeper layers (Nicoll & Blakemore, 199Q Nicoll & Blakemore, 1993
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Thomson et al., 1993. We explored a range of different connedion densities: For the 100
neuron columns presented here we used a mnnedivity of 10%. Thus eat model cdl
recaved input from exadly 8 pyramidal cdls and 2 baskets cdls, randomly chosen. Since
ead reuron recaved input from only 10 other neurons in the clumn, it was necessary to
add a scding fador to the peak synaptic strengths. For a 100 neuron column with 10%
connedivity al synaptic strengths were multiplied by 10. For a 1000 neuron column with
10% connectivity no scaling factor was necessary.

In order to view rapidly and easily the average adivity of the whole network an
analog of the locd field potential (LFP) was cdculated for eat simulation, cdled the locd
averaged potential (LAP). Thiswas arunning average of all the membrane potentials of all
the pyramidal cdl somas. The presence of oscill ations in this LFP analog was an indicaor
of synchronized adivity in the pyramidal cdl population. Our LAP is not diredly
equivalent to ared LFP, which is a sum of all the locd currents, both voltage- and ligand-
gated, weighted by the distance of the sources from the dedrode. However, our LAP isa
dired measure of the average neuronal adivity and for the task of showing synchronous
oscillations it is actually better suited than the real LFP.

A quantitative measure of the degree of synchronizaion between two columns is
provided by the arrelation amplitude (CA), ranging from -1 to +1, which is the height of
the pe&k closest to zero in the aosscorrelation of the two network LAPs (Gray et al.,
1992). The phase shift of this pe&k from zero provides a measure of the tightness of the
synchronizaion. For single mlumns the CA is measured for the first pesk away from zero
in the auto-correlation of the LAP. This number refleds the regularity and amplitude of
the oscill atory discharges of the synchronized column. The phase shift of this pes gives

the period of the oscillation.



93

For some data the power and phase spedra were cdculated using the software
padkage ACE/gr (Paul Turner, Oregon Graduate Institute of Science and Tednology)

which calculates the spectrum by

Power (w) = X2 (W) + y? (W)

where x(w) and y(w) are the red and imaginary frequency coefficients computed by the

FFT. The phase was calculated by

Ov(co\O
Phase(w) = tan‘lmz(l@D
0

@)o
Simulations
All simulations were caried out on a MIPS Magnum 300033 wsing a modified
version of CABLE (Hines, 1989. We used a time step of 0.1 ms with 2nd order corred

numericd integration. A smulation with 100 neurons and 10% connedivity took 9

minutes of computer time to simulate 500 ms of real time.

Results

Synchronization within a single column
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Fig. 2 shows a smulation of a 100 neuron column (80 pyramidal cdls, 20 basket
cdls) without synaptic connedions. The pyramidal cdls were d driven by uncorrelated
Poisson spike train inputs at a mean frequency of 200 Hz, but they had dfferent intrinsic
bursting frequencies because of different internal cacium elimination rates (see Methods).
The bursting was less regular than in Fig. 1 dwe to the injedion of noise into eah
pyramidal cdl soma. The basket cdls receved no driving input and only fired a few
spontaneous Pikes due to badkground noise. Because there were no synaptic connedions,
there were no correlations between the neurons and the LAP was flat after the initia
transient burst.

Fig. 3 shows the output of the same network when the neurons were randomly
conneded at a densty of 10%. Oscillations were visible in the LAP indicating
synchronized firing of the pyramidal cdls (CA = 0.56 and the period of oscill ation was
22.2 ms, giving a frequency of 45 Hz). The basket cdls $owed evidence for bursting at
the same frequency as the pyramidal cels even thought they have no intrinsic oscill atory
properties; they are diredly driven by the pyramidal cdls, so the fad that they fired in
bursts is further evidence of synchronized population discharge. The medhanism of
synchronization is detailed in the Discussion.

As observed in experimental reoordings in vivo (Gray et a., 1992, the
synchronization sometimes gontaneously ceased (in this case & 100and 350ms) and then
regppeaed. The basket cdl bursts in the model becane lessclumped at these times. Since
the driving input to the network was gationary throughout, these changes were not due to
changes in the nature of the ecterna input. The synchronization was a statisticd
phenomenon, as observed in the experimental recordings; it was often difficult to see a
regular oscill ation in the spike train of a single cdl, espedaly if it did not fire many spikes,
and of course it was impossble to see synchronization. When examining all 7 single-cell

traces, one observes moments when the spikes all ‘lined ug, but even in these caes there
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was sgnificant jitter in individual spike times. Comparing two traces gike by spike, such
as the top two pyramida cdl traces in Fig. 3, we often found few instances of
simultaneous firing, athough on average both cdls were locked to the underlying
oscill ation of the population (shown by the LAP). In other cases (such as the 3rd and 4th
trace the synchronization of spike firing was cleaer. It is important to have an averaged
measure of the adivity of the whole population (such as the LAP shown here) to
determine if the component cells are collectively oscillating in synchrony.

In retworks with 100 neurons we @uld not obtain good synchrony with
connedion densities of lessthan 10%, but lower connedion densities were dfedive when
simulating networks with more neurons. In Fig. 4, 1000 neurons were @mnneded at a
density of 5%, with a synaptic strength scding fador of 2 (seeMethods). We obtained the
same results with a wnnedivity of 10% and no scding fador; i.e. the synapses had same
strengths as in red cortex. The oscillation and synchronizaion in a network of 1000
neurons was highly regular, as a mnsequence of the law of large numbers, although there
was gill asignificant amount of jitter in spike times at the level of single cdl traces (CA =
0.58 and the period was 19.8 ms, giving a frequency of 50.5 Hz, dlightly higher than the
100 cdl network). Even though in terms of numbers this smulation may be more redistic
than the 100 neuron smulations, the output of the smaller network appeas more redistic
(less regular). This is considered further in the Discussion.

The membrane potential trace of the 4th pyramidal cdl in Fig. 4 is siown at a
higher temporal resolution in Fig. 5. The large compound EPSPpresent on ead cycle of
the population oscillation is clealy visible. Spikes only arise from the top of these
compound EPSK, but not every compound EPSP causes a spike. This figure can be
compared to Fig. 6, an intracdlular recording from a cd visua cortex neuron firing

oscill atory bursts during optimal stimulation. There is a rhythmic series of large compound
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EPSP, some of which cause spiking. There ae no spikes at other times in the phase of

the oscillation.

Sensitivity to varying parameters

The distributions of synaptic conductances and time delays in all of our smulations
had large standard deviations, so that synaptic connedions with an overall mean of 1 nS
often had values as snall as 0 nS and as large & 3 nS and time delays with a mean of 1.2
ms had values from 0.5 ms up to as high as 4 ms. The synchronized firing of the network
was not affeded by this variability, and was in general a robust phenomenon: We repeaed
all of our smulations with a noise level 4 times higher than that shown here (pegk current
4 nA for pyramids, 1.2 nA for basket cdls - see Methods) and with a resting membrane
potential of -65mV insteal of -55mV, but synchronized oscill ation was gill present. With
some sets of parameters (such as higher conredivity, stronger inhibitory synapses and
lower resting membrane potentials) we were ale to dbtain even stronger synchronization,
but the values of parameters used for the simulations presented in this paper are probably
closer to those in the real cortex.

We found that increasing the mean synaptic delay within a awlumn did not disrupt
synchronizaion, even when the mean delay was as large & 7.2 msrather than 1.2 ms (not
shown). In this case, the oscill ation became more regular, with every cdl firing on every
cycle and the cdls with the highest intrinsic bursting frequency always lealing the others.
The frequency of oscill ation of the network was also deaeased die to the long duration of
ead hurst. The only other way we found to alter the frequency of oscillation of the
network was to vary the strength of the external driving input. By changing this parameter

it was possible to vary the oscillation frequency of the network in the range 35-60 Hz.
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Network synchronization was generally resistant to variations in synaptic
strengths. However, inhibitory synapses had to be stronger than excitatory ones. We found
that a ratio of approximately 4:1, the value initially chosen on the basis of physiologicd
results (see Methods), was optimal for redistic synchronization. In networks without
inhibition, smulating the dfed of bicuculine, excitatory feedbadk operates unconstrained
producing large paroxysmal burst discharges, with the membrane potentials of the highest
intrinsic frequency cdls latching up st spike threshold (not shown). The only
inhibitory/hyperpolarizing forcein these networks was the intrinsic potassum conductance
of the pyramidal cells, which was not strong enough to control the excitatory feedback.

The network was also somewhat sensitive to the strength of redprocd inhibition
between the basket cdls. Although it is known from anatomicd studies that locd
inhibitory interneurons make synaptic connedions on ead other (Douglas & Martin,
1990, very little is known about the function of these connedions beyond the vague
concept of ‘disinhibition’. Fig. 7B shows the same network LAP asin Fig. 3 (CA = 0.56)
and one of the basket cdl traces. Fig. 7A is the LAP from the same network with
inhibitory contads between basket cdls removed. Synchrony was dightly weeker (CA =
0.50) because the basket cdl bursts were no longer terminated by inhibitory feedbad and
as aresult becane lessdiscrete, sometimes continuing into the next cycle. This produced a
lower frequency of oscill ation (38 Hz compared to 45 Hz in Fig. 7B). This higher level of
inhibitory adivity also resulted in less adivity in the pyramidal cdl population (not
shown). When synapses between baskets cdls were made very strong (Fig. 7C)
synchronization was sverely disrupted (CA = 0.04) . In this case basket cdls were
inhibited before they could provide dfedive inhibition to the pyramidal cdl population so
the pyramidal cdls began to fire @ntinuoudly instead of in synchronous bursts. Thus,

mutual inhibition between inhibitory interneurons within a single @lumn is important for
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producing synchronized population oscill ations, but the strength of this inhibition should

not be as great as that between inhibitory cells and their pyramidal targets.

Synchronization between columns

Since synchronizaion has been observed between different corticd columns and
even different corticd areas (Eckhorn et al., 1988 Gray et a., 1989 Engel et al., 1991;
Kreiter & Singer, 1992 Koenig et a., 1995 we performed smulations to examine how
synchronization arises between two columns, both internally synchronized. Two columns
of 100 neurons ead were simulated, ead column conneded as in Fig. 3. Conredions
between the mlumns were then added to seeif synchronizaion between them could be
established. Long-range wnnedions in cortex are mediated by pyramidal cdl axons, and
these aons make most of their synapses on other pyramidal cdls, athough at a
significantly lower density than within their own column (Hirsch & Gilbert, 1991, Martin,
1988 Kisvarday & Eysdl, 1992. Therefore, we started by conneding the pyramidal cdls
between the two columns with a density of 2.5% (eat pyramidal cdl receved a synapse
from 2 pyramidal cdls in the other column). In this case and al other smulations using
pyramidal-pyramidal connedions only, we were not able to obtain good synchronization
between the two columns (not shown). The internal synchrony of ead column appeaed
to be degraded and the only clea tendency we noted was for the clumns to sometimes
oscill ate 180 degrees out-of-phase with ead other. With some parameter choices this was
avery strong effed, but in no case did clea synchronization with zero phase lag develop
between the columns.

Long-range pyramidal cdl axons make some of their synapses on dendritic shafts,
many presumably belonging to inhibitory neurons (Douglas & Martin, 1990 White, 1989.

Thus we aded intercolumnar connedions from pyramidal cdls to basket cdls to see if
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this would synchronize the two columns. Fig. 8 shows the results of a smulation with two
columns conneded together at a density of 4% (ead pyramidal cdl receved 3 synapses
and ead basket cdl recaved 4 synapses from pyramidal cdls in the other column). When
the intercolumnar connedions were turned on at 100 ms, the two columns immediately
began to synchronize (CA = 0.61) and maintained nea zero average phase difference (1.2
ms) for the duration of the simulation. When one clumn spontaneously desynchronized
(eg a 350 ms) the other did too, then both rapidly resynchronized. Intercolumnar
synchronization could not be obtained by simply increasing the number of pyramidal-
pyramidal connedions. Thus the pyramidal-basket intercolumnar conredion, while
numerically small, was vital fantercolumnar synchronization.

Fig. 9A shows the aoss correlation of two LAPs from the simulation shown in
Fig. 8. The cettra ped is at -1.2 ms indicaing tight synchronization between the two
populations. For comparison Fig. 9B shows the aosscorrelation between two LAPs from
a smulation in which the two columns were not conneded (CA = 0.17). In this case there
was a pe&k at some random non-zero position indicaing that the two populations were
not synchronized with each other.

The smulation of the synchronizaion between the two columns in Fig. 8 was
extended for 6.5 sec Fig. 10B shows the averaged power spedra of the two LAPS, with a
clea pe& at 44 Hz, the frequency of the population oscill ation. There may be asmaller
pe&k nea 22 Hz, a subharmonic of the main pe&k. Fig. 10A shows the difference between
the phase spedra of the two LAPs over the same frequency range & the power spedra.
This phase difference has large, random fluctuations at al frequencies except around the
frequency of the population oscill ation. In this region the phase difference was consistently
small, and at 44 Hz it was almost zero. This is evidence that the two populations were

oscillating at 44 Hz in phase with each other.
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Fig. 10C,D shows the same results for the two unconneded columns. Although
there was sgnificant power in both spedra aound 40Hz, a single pe&k was not as clea.
The phase difference did not deaease aound 40Hz, indicaing that the two columns were
oscillating at random phase with respect to each other.

Increasing synaptic time delays between neurons within a @lumn did not disrupt
synchronization. However, increasing the synaptic delay of the intercolumnar connedions
adversely affeded the synchronizaion of the two columns. As the delay was increased to
3-4 ms a phase shift of a few ms developed between the two populations. When the
intercolumnar delay was greder than 5 ms g/nchronization was verely disrupted. Fig. 11
shows two columns conneded with a mean delay of 7.2 ms. The synchronizaion of the
two columns was we& (CA = 0.39) because the internal synchrony of ead column was
wed and sporadic. We mnclude that to maintain effedive synchronization two columns
must be mnneded with a delay of approximately 5 ms or less The implicaions of this

result will be considered in the Discussion.

Effectiveness of long-range horizontal axons

The results of our model suggest that intercolumnar connedions mediated by long-
range horizontal axons are modulatory in function rather than diredly excitatory, primarily
because of inhibition diredly evoked by long-range axonal stimulation. In order to test the
validity of this result we have compared our model with an in vitro experiment diredly
testing the dfeds of long-range axona stimulation. Fig. 12 shows a smulation of an
experiment performed in a cd corticd dlice preparation (Fig. 7 of Hirsch & Gilbert
(1991). In the experiment, shocks of increasing strength were gplied to lateral fibersin
the upper layers, presumably stimulating horizontal pyramidal axons conneding dstant

columns. Synaptic responses were rewmrded from target pyramidal and presumed
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inhibitory interneurons. Our simulation produced the same results as the experiment: At
low stimulus grengths EPSF were observed in both pyramidal and basket cdls. Due to
the lower threshold of the basket cdls, spikes were sometimes produced. As the stimulus
strength increased the basket cdls fired more spikes in response; in contrast, the pyramidal
cdls were inhibited by stronger shocks. This inhibition was a dired result of the response
of the basket cdls. Thus, due to the relatively low numbers of inter-columnar axons and
the lower threshold of the target basket cdls, the excitatory inter-columnar fibers do not
necessarily have a strong excitatory effect on their target columns.

Fig. 13 shows the output of two conneded columns, the bottom one driven
normally by external input, the top receving no external input until 350 ms. Although the
top column recaved input from the bottom one that was sufficient to synchronize the two
populations when they were both being driven (after 350 ms), this input was not strong
enough to cause significant firing before 350 ms. The low firing rate in the top column was

not significantly higher than the spontaneous rate due to noise.

Discussion

Synchronized oscill ations have been demonstrated in a wide variety of models of
interading neurons ranging from models based on coupled intrinsic oscill ators (Winfree
1967 Schuster & Wagner, 1990 Sompolinsky et a., 1990 Williams, 1992 to more
redistic models incorporating the dharaderistics of red neurons (Wilson & Cowan, 1972
Wilson & Bower, 1991, Sporns et a., 1989 Bush & Douglas, 1991). The former alow
analysis while the latter allow detailed comparisons to be made to reardings from corticd
neurons. In particular, our redistic model was highly constrained by the morphology and

physiology of corticd neurons and the patterns of connedivity observed in primary
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sensory cortices. Parameters that were not fully constrained were varied over a wide range
to find values that led to a match with physiologicd recordings. Our main results concern
the essntial role of inhibitory neurons in synchronizing colledive oscill ations within and

between sparsely connected columns of cortical neurons.

Synchronization in a single column

The mechanism of synchronizaion is smilar to that described previously (Bush &
Douglas, 1991): Pyramidal cdl burst discharges rapidly excite other pyramidal cdls,
producing a large compound EPSPin al cdls in the network, including the inhibitory
basket cdls. The basket cdls are driven to fire smultaneoudly, their feedbad inhibition
onto the pyramidal cdls then terminates the population burst and, together with intrinsic
potassum conductances, produces a post-burst hyperpolarization. Since the input
resistance of the pyramidal cdls is gredly reduced during this hyperpolarization (Bush &
Sejnowski, 1994, there is less chance of the cdl spiking duing this time (out of phase
with the oscill ation). Cells with intrinsic bursting frequencies that vary over an octave (15
- 30 Hz) can be made to synchronize together at one frequency (eg. 45 Hz) by this
medanism. Cells with lower intrinsic frequencies tend to ‘miss cycles of the oscill ation
rather than fire out of phase and they tend to fire single spikes instead of bursts.

This medhanism also produced synchronizaion in networks of regular firing
pyramidal cdlsthat do not fire in bursts (not shown). The population EPSF were smaller
and shorter in duration without bursting and of course the pyramidal celsfired less pikes;
thus, bursting improves but is not necessry for synchronization. A combination of
bursting and regular firing cells also produced synchronization (not shown).

The synchronized oscill ations demonstrated by the network shown in Fig. 3 dsplay

a number of fegures in common with experimental recordings (Engel et al., 1990: The
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similarity of the form of single cdl traces from simulation and experiment (Figs. 5 and 6)
suggests that the model has captured some of the most basic charaderistics of the
biophysicd medhanism of synchronous oscill atory firing in cortex. Intracdlular recordings
from cat striate crtex demonstrate oscill ations that are stimulus dependent (absent during
spontaneous adivity) and increase in amplitude during stimulation while the cdl is
hyperpolarized (Jagadeesh et al., 1992 Bringuier et al., 1992. This suggests that the
oscill ations arose from rhythmic intracorticd excitatory synaptic input. Of course other
medanisms may produce the same type of behavior (Llinas et al., 1991); (McCormick et
al., 1993), and several mechanisms may be involved.

Another fedure observed in the network smulations is the variability of
synchronization. In the model, as in the experimental data (Gray et al., 1992, periods of
synchrony generally lasted a few hundred ms, with rapid spontaneous transitions into and
out of the synchronized state. In addition, the presence of synchrony varied from tria to
trial (using a different sead for the random number generator for noise and Poison input).
Throughout ead tria the externa driving input was a stationary Poisson process thus,
this variability cannot be due to changes in the statistics of the input and the complex
internal dynamics of the network must be responsible for the rapid switching between
synchronous and asynchronous firing. However, in the 1000 neuron smulation the
variability in the LAP was reduced (athough individual cdl traces gill showed marked
variability) (Fig. 4). Therefore, one posshility is that synchronized oscillations in
neocortex are mediated by cdl groups composed of about a hundred neurons. Synaptic
strengths would have to be very large in a 100 neuron network (scaing fador of 10,
giving EPSE of 10 nS - see Methods). There is recent evidence that some single EPSF
could be this large, producing quantal depolarizations of a few mV instead of a few

hundreduV (Thomson et al., 1993).
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With 1000neurons we were ale to use synaptic strengths without a scding fador,
evidence that oscill ating neuronal groups are made up of on the order of 1000 neurons.
This would fit better with a @nsideration of the number of cdls involved: Given
approximately 100,000 neurons/mm3 and a olumn 100-200 K m in diameter there ae on
the order of 1000neurons in one layer of one wlumn. If thisisthe cae then the variability
described above must be due to some source not included in the model. There ae many
potential candidates, including low probabilities of quantal release, use- and time-
dependent potentiation and/or depresson of synaptic strengths, the adion of
neuromodulators or some extrinsic corticd or subcorticad signal. In a few 1000 neuron
simulations the probability of an EPSFIPSP given a presynaptic adion potential was
reduced to 0.5 or lower (not shown): The anplitude and regularity of the LAP oscill ation
was sgnificantly reduced. If this is not the cae and instead 100 neurons is the minimal
size of an oscill ating group, then a single layer in a single alumn could contain many such
groups, which would seem unlikely in primary visua cortex, athough association areas
such agntorhinal cortex may support such smaller groups.

Experimental reaordings also show a frequency variability of synchronized adivity
within and between trials ranging from 40-60 Hz (Gray et a., 1992. The model of Bush
and Douglas (1991 displayed frequency variability within a single trial, but this was an
artifad of having only one inhibitory neuron in their model: A single extra spike from this
neuron would significantly delay the onset of the next population burst. We could obtain
different frequencies of oscill ation in our more redistic smulations only by changing the
strength of the external driving input. In this way the frequency could be danged in the
range 3560 Hz. The externa input was kept constant within a trial and a dhange in
oscill ation frequency was never observed. Therefore, we suggest that the frequency
variability observed in experimenta recordings is due to a cncomitant variability in the

strength of the externa input. External here means external to the synchronized group,
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coming from the thalamus or other areas of cortex. For a pyramidal cdl in one of our
smulations, approximately half of its excitatory input was external stationary Poison
spike trains and half was excitatory feedbadk from other pyramidal cdls in the network,
the sole source of synchronized inputs.

There was no external input onto the basket cdlsin our model. If we included such
input network synchrony was degraded. Thus, athough external inputs to a corticd
column do contad inhibitory cdls as well as pyramidal cdls (Douglas & Martin, 1990,
our results suggest that the vast majority of input to the inhibitory interneurons in a
synchronized oscill ating cdl group comes from excitatory (pyramidal) cdls in that same
group. Alternatively strong external inputs to inhibitory cedls may be wrrelated, either
from the thalamus or other corticd regions, as long as they are synchronized with that

column.

Synchronization between columns

Zero-phase lag synchrony between two populations was established within one or
two cycles of the intercolumnar connedions being adivated (Figs. 8 and 13. Often the
oscill ation in one @lumn would continue unperturbed while a gcle in the other would be
suppresed or a new one prematurely initiated to get the two columns in phase.
Conredions from the pyramidal cdls in a ®lumn to both the pyramidal cdls and the
basket cdls in the other column were required. The greder effediveness of inhibitory
input in producing synchronization (Lytton & Seinowski, 1991) may explain the neal for
pyramidal-basket intercolumnar connedions. Redprocd connedions were not strictly
necessary: Two columns could be synchronized with uni-diredional connedions from one
to the other (not shown), although the synchrony obtained with this connedivity was not

as strong as with reciprocal connections between the columns.
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One parameter that did have alarge dfed on synchrony between columns was the
delay time (Fig. 11). Our model predicts that two corticd areas cannot be synchronized by
direa connedions if the delay in those wnnedionsis sgnificantly greaer than 5 ms (~1/4
period), in agreament with previous models based on coupled oscillators (Schuster &
Wagner, 1989 Sompolinsky et a., 1990. Interestingly, in the ca this does not appea to
exclude any areas of cortex diredly conneded to ead other, even if they are in opposite
hemispheres. Time delays between cdls in the same olumn, separated by 10s of p m, are
1-2 ms due to conduction along thin, unmyelinated axons (Mason et al., 1991, Thomson et
al., 1988. Time delays between cdls in opposite hemispheres, separated by several cm,
have been recorded at or below 5 ms due to conduction along thick, myelinated axons
(McCourt et a., 1990. It would appea that the aons are organized to put corticd cdls
functionally next to ead other. Thus, cdls coupled by synchronizaion throughout the
extent of the visual system can work on the same task simultaneously.

However, the same is not true for the wrtex of the rabht, where cdlosa
conduction times are 10s of ms (Swadlow, 1991), too long for synchronization to work by
dired conredions. Thus, for this animal either there is ome other medhanism of
synchronization, or it does without synchronized 40 Hz activity of its two hemispheres.

The results diown in Figs. 12 and 13 are consistent with the hypothesis that the
horizontal connedions in neocortex serve amodulatory role; in this case they serve to
synchronize @rticd columns. The strong effed of surround stimulation on a neuron that is
also recaving dred stimulation of its receptive field (Gilbert & Wiesdl, 1990 is aso
consistent with a modulatory role for the long-range horizontal connedions. It should be
noted that recent work has suggested that these wnnedions can ke strengthened under
some oonditions (perhaps by sprouting of extra aon collaterals) to the point where they
can indeed drive cdlsin the dsence of other input (Pettet & Gilbert, 1992 Darian-Smith
& Gilbert, 1994).



Conclusion

Synchronization in model corticd networks is a robust phenomenon resistant to
variation in parameters that are known to show a wide degree of variation in cortex. As
long as time delays are short enough, which in the ca seeans to hold even aaoss
hemispheres, cdls in any number of diredly conneded corticd regions could fire in
synchrony with ead other regardless of where they are located physicdly. Our model is
incomplete in some respeds, but the cantral role of inhibition in promoting synchronous
adivity is likely to be robust; indeed, inhbition has been shown to be aucia for
synchronization in other related models (van Vreeswijk et a., 1994 Kopell & LeMasson,
1994).
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FIG. 1. Intrinsic firing properties of isolated model neurons. A) Bursting response of a
pyramidal cdl when injeded with constant 0.2 nA depolarizing current at the soma. B)
Higher frequency response to a 1 nA current. The stronger input also produces more
spikes per burst. C) Postsynaptic response of a seaond pyramidal cel conneded with a0.5
nS synapse to the cdl shown in (A). Top traceis the dendritic potential, bottom traceis
the somatic potential. D) Spike train from a basket cdl injeded with 0.05 nA depolarizing
current and +/- 0.8A noise (see Methods).
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FIG. 2. Activity in models of 100isolated layer 5 corticd neurons. The top 2 traces $row
the somatic membrane potential of 2 basket cdls from a population of 20 making up one
column. Sincethe driving input to the network goes only to the pyramidal cdls the basket
cdls do not fire many spikes. The next traceis an analog of the locd field potential, cdled
the locd averaged potential (LAP), to show the globa synchronization of the whole
column (seeMethods). The flat traceshown here indicates that the neurons were not firing
synchronously. The bottom 7 traces $ow the somatic membrane potential of 7 sample
pyramidal cdls from the total population of 80. In this example the intrinsic bursting
frequency of the cells increases towards the bottom.
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FIG. 3. Intracolumnar synchronizaion in a model network of neurons conneded with a
probability of 10%. The oscill ations in the LAP shown here indicae that the neuronsin the
column fired synchronoudly. This is confirmed by the firing of the basket cdls, which have
no intrinsic bursting dynamics and only fire bursts in response to synchronized input from
the pyramidal cdls. Thereis considerable fjitter' in an individual pyramidal cdl's output; the
network oscill ation is a statisticd property of the population and not at al ‘clock-like'.
The synchrony spontaneously disappeas and regppeas at 100and 350ms. This rapid shift
has been seen in real experimental data.
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FIG. 4. Synchronizaion of a 1000 neuron network conneded at a density of 5%. The
oscill ation in this network, apparent in the LAP and rhythmic bursting of the basket cdls,
is much more regular than that of the 100 neuron network shown in Fig. 3, although there
is still significant jitter’ in the individual pyramidal spike trains.
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FIG. 5. Higher resolution plot of the membrane potentia of the 4th pyramidal cdl from
Fig.4. There ae aseries of rhythmic compound EPSF, some of which have spikes arising
from them. Spikes do not occur at other times (in the ‘troughs’) becaise the membrane
resistance is substantially reduced by a combination of inhibitory feedbad and intrinsic
potassium currents.
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FIG. 6. The response of a smple cdl remrded intracdlularly in area 17 of the cd to a
square wave grating (1 c/deg) presented to the left eye & the optimal orientation and
velocity. The data in the lower trace & higher time resolution was taken from the gpoch in
the upper trace that is marked by a horizonta line. The cdl was tightly tuned for
orientation and showed a monocular preference for the left eye. Vm = -80 mV, Rin = 57

MQ. Thistraceshows a smilar series of compound EPSP ometimes topped by spikes as
the tracein Fig. 5. It is not known whether this neuron was an intrinsicaly bursting cel as
assumed in the model. Cell recorded by CM Gray and DA McCormick.
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FIG. 7. Effed of increasing the strength of redprocd inhibition between the basket cdlsin
a 100 neuron network. Inhibition increases from top to bottom. Ead trace shows the
population LAP and a sample basket cdl trace A) No inhbition between basket cdls.
Synchronization can still occur, but is not optima because the discharges of the basket
cdls on ead cycle perseverate, sometimes running into the next cycle. B) Basket cdls
conneded by 1 nS synapses. These traces are taken from Fig. 3. This is the optimal
amount of mutua inhibition between basket cdls in our model column. C) Basket cdls
conneded by 2 nS synapses. Synchronization is degraded becaise the basket cdls inhibit
ead other too strongly before they can fire a ©herent burst and effedively terminate the
burst of firing in the pyramidal cell population.
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FIG. 8. Zero phase lag synchrony between two columns of 100 neurons conneded with
pyramidal to pyramidal and basket cdl synapses at a probability of 4%. For ead column a
basket cel trace 3 pyramida cdl traces and the LAP of al the pyramidal cdls in that
column are shown. Synchrony is rapidly established when the inter-columnar connedions
turn on a 100 ms and remains for the duration of the smulation. When the lumns
temporarily desynchronize and thexsynchronizedg. at 375 ms), they do so together.
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FIG. 9. Crosscorrelations of the LAPs of two-column smulations. A) Results from
network shown in Fig. 8. Thereisalarge central pe&k centered on -2.6 ms which indicaes
that the two columns were ostillating in phase. B) Crosscorrelation from two
unconneded columns. The largest pe& is at some random non-zero position indicating
that these two columns were not oscillating in phase with each other.
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FIG. 10. Phase difference between LAPs from two-column simulations. A) Difference
between the phase spedra of the LAPs over the same frequency range & in (B). The
phase difference deaeases to zero at 44 Hz, the osctillation frequency of the network,
indicating zero-lag synchronization of the two columns. B) Averaged power spedra of the
two LAPs of Fig. 8 (smulation continued for 6.5 secs). Thereisalarge pe&k at 44 Hz. C)
Phase difference between two LAPs from two unconneded columns. There is no deaease
in the phase difference aound the oscill ation frequency of the two columns confirming
that they are not synchronized together. D) Averaged power spectra of thaRso
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FIG. 11. Synchrony between columns is sverely degraded by increasing the inter-
columnar time delay. These two columns were conneded by synapses that had a mean
delay of 7.2 ms and turned on at 100 ms. Not only was the synchrony between the
columns degraded by long time delays, but the internal synchrony within ead column was
also disrupted.
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FIG. 12. Response of a sample basket cdl and two representative pyramidal cdls to
stimulation of inter-columnar connedions. Increasing from left to right, 10, 50 or 80
pyramidal cdlsin one mlumn were stimulated with 0.5 nA current for 8 ms. Postsynaptic
responses were recorded in the other column. Synaptic scding fador of intercolumnar
connedions was reduced from 10 to 3 to allow the smulation of stimulating a small
number of fibers. Wedk stimuli produce an EPSPin one the pyramidal cdls and a single
spike in the basket cdl. Stronger stimuli produce more spikes in the basket cdls which
causdPSPs in the pyramidal cells, shutting off the excitatory response.
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FIG. 13. Inter-columnar connedions have little dfed on an undriven column. The two
columns $own here ae mnneded as in Fig. 8, with the inter-columnar connedions
turned on at zero ms. The upper column receves no external driving input until 350 ms
(arrow). After this time the two columns are synchronized by the inter-columnar
connedions, but before this they have very little dfed on the undriven column, producing
afew subthreshold depolarizations but few spikes. The basket cdls have alower threshold
and fire a few spikes, which helps to suppress the pyramidal cells (see Fig. 12).



