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ABSTRACT OF THE DISSERTATION

Compartmental Models of Single Cells and Small Networks in the Primary Visual Cortex

of the Cat

by

Paul Bush

Doctor of Philosophy in Neurosciences

University of California, San Diego, 1995

Professor Terrence J. Sejnowski, Chair

This thesis has two main themes. Firstly it documents the process of constructing

realistic single cell and network models, focusing particularly on how to represent

individual neurons in network models consisting of hundreds to thousands of units. In the

third chapter a method of drastically reducing the number of compartments in a single cell

model is presented. The method is based on conserving the axial resistance of the model

neuron and not the surface area. The resulting reduced model neuron displays the same

electrotonic characteristics as the original full-size model neuron while taking up a fraction

of the memory and computation time. In addition the reduced model neuron retains the

spatial dimensions of the full model, an important consideration when attempting to

construct spatially accurate models of laminar cortical areas.

Secondly, the subject of cortical inhibition is addressed. In the last few years the

perception of the role of inhibition in the neocortex has changed from that of a powerful
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antagonist of non-specific excitation to that of a synergistic process helping to shape the

excitatory response. The second chapter presents results from a

single cell simulation of a recent experiment, showing how excitatory and inhibitory

synaptic inputs interact non-linearly in a neuron’s dendritic tree. It also demonstrates that

while cortical inhibition may be strong enough to suppress even strongly excited cells, it

does not do so in the sustained manner necessary to veto non-specific excitation.

The forth and fifth chapters show how strong inhibition can have a role in cortical

dynamics when activated transiently by a synchronized burst of pyramidal cell firing. The

brief but powerful inhibitory activity serves to truncate and demarcate the burst of firing in

the pyramidal cell population. In this manner the inhibition is essential for producing

synchronized oscill atory activity in the network. In this system inhibition is maximally

active during the period that excitation is greatest, but inhibition and excitation function

together rather than in opposition. In addition, the properties and characteristics of

synchronized oscill atory activity both within and between cortical columns are analyzed in

these chapters.
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CHAPTER I

Introduction

The perspective of a computational neuroscientist

What does the neocortex do? We know the answer to this, the neocortex does

‘us’ . In all probabili ty it is the part of the brain most responsible for generating what we

think of as ourselves, our humanness. How does the  neocortex function? What are some

basic principles of cortical neuronal operation? At the fundamental level of single cells and

microcircuits consisting of hundreds to thousands of cells, we really have no answers to

these questions at the present time. A significant amount of work has been done at the

single cell level discovering and analyzing the cable properties of neurons, characterizing

the electrotonic spread of current and documenting a plethora of ligand- and voltage-gated

conductances (Rall 1964; Hill e 1984; McCormick 1989). The results of this work are of

course essential for developing an understanding of, but do not directly address, how

single cortical cells operate and what function they are performing. In part this is because

it is very difficult if not impossible to determine the function and role of single cells just by

studying single cells. After characterizing their basic intrinsic properties the cells must be

studied in the context of the circuits that they make up. The functions and principles of
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operation of single cortical cells and small networks of such cells will most likely be

discovered together. Single cells have features and properties whose purposes will only

become clear when considered in their appropriate roles in the network, just as networks

of cells will show behaviors and exhibit phenomena that depend on particular

characteristics of their component cells.

What is the best way to discover how cortex operates, the fundamental principles?

A great deal of experimental work has been done on cortex; anatomy and physiology of

networks as well as single cell studies. This work provides constraints within which any

comprehensive understanding or theory of cortex must fit. It can also provide some clues

as to how the cortex must operate; we now know that all neocortex from primary sensory

to frontal ‘association’ cortex, from rat to human cortex, is organized along similar lines

(Martin 1988). Thus, whatever the task, each area of cortex uses the same basic circuit to

accomplish it - the biggest difference is the source of the inputs. The following facts are

general features of all neocortex: The primary input enters the middle layers, is relayed to

the upper layers and then to the deeper layers. The upper layers project to other cortical

areas and the lower layers project out of cortex and back to the origin of the inputs. Most

cortical neurons are excitatory and are covered in spines, they are the projection neurons

of cortex. Approximately 20% of cortical neurons are inhibitory and are not very spiny,

they are the interneurons. Recent work shows that the excitatory projection neurons also

make significant contributions to the intrinsic circuitry of cortex, and the details of this

circuitry are beginning to be mapped out (see Douglas and Martin (1990b) for review).

However, these data, synthesized into principles of organization, are not principles

of function. It is unlikely that principles of function at the level of the cortical microcircuit

- how a cortical column operates, beginning with its dynamics - can be divined just from

consideration of the data. The main reason for this is that cortical circuitry is so complex

and consists of many feedback loops. Consider, for example, the first few synapses in the
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primary visual cortex of the cat, focusing just on the features that are likely to be general

properties of neocortex. The spiny stellate cells in layer 4 receive a numerically small input

from the thalamus, a much larger input comes from the neighboring (200 µm) layer 4

spiny stellates in the same column. The thalamic input also activates layer 4 inhibitory cells

which contact the spiny stellates. The spiny stellates in turn contact the inhibitory cells,

and the inhibitory cells contact each other. However, the largest input to the spiny stellates

is from pyramidal cells of layer 6 which contact layer 4 spiny stellates and inhibitory

neurons over a wide area (up to 1mm). These layer 6 cells also receive direct input from

the thalamus and project back to the precise area from which they receive input. A portion

of their dendritic tree arborises over a wide area in layer 4 (~500 µm) where it can receive

inputs from spiny stellate cells, inhibitory interneurons, thalamic afferents and possibly

other layer 6 cells (Ahmed et al. 1994). A consideration of this anatomy is daunting

enough for someone interested in how layer 4 responds to thalamic input, but there is also

the physiology to consider. Spiny stellates and layer 6 pyramids fire relatively low

frequency adapting trains of action potentials while inhibitory interneurons such as those

of layer 4 (clutch cells) have low thresholds and fire high frequency non-adapting trains of

short duration spikes (McCormick et al. 1985). Layer 6 cells are particularly sensitive to

modulatory neurotransmitters such as noradrenalin and acetylcholine which cause dramatic

changes (increases) in response rates (Singer et al. 1976). These modulatory systems are

not very active under the anesthetized conditions of most in vivo experiments. In order to

understand exactly how layer 4 (the gateway to cortex) functions, all these facts must be

considered together.

Consider just the case of an excitatory projection that terminates on both

excitatory and inhibitory neurons in its target area, a common feature of neocortex. What

is the function of this projection? Is it excitatory or inhibitory? A definitive answer cannot

be given without knowing the intrinsic properties of the input and target cells as well as,
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and this is crucial, the current state of the network. If the target cells are relatively

hyperpolarized then the lower threshold inhibitory neurons will fire first and prevent any

activity building up in the excitatory cells. If the target cells are depolarized by other

synaptic activity then the excitatory cells, containing sub-threshold voltage-dependent

conductances activated by depolarization, will fire in response to the input and activity will

begin to build up in the target population (Hirsch and Gilbert 1991).

So the state of all of the components of the cortical circuit at any time is a major

determinant of its response to input. Returning to the case of layer 4 we see that it is

difficult if not impossible to say what the output will be to any input just by considering

the (extremely complex) anatomy and physiology. Somehow we need to incorporate all

that data and at the same time keep track of the state of all the components in the circuit

as the response develops. The most effective way of doing this at present is with computer

simulation. All the anatomical data and intrinsic physiological properties can be included in

accurate representations of neurons and their synaptic connections. The states of every

component are updated as the simulation is numerically integrated. Ideally, one can just

watch the results appear - if your model is accurate you discover how layer 4 responds to

input just by watching the simulation progress.

Of course in practice things are not so simple. Firstly, the simulation is completely

dependent on the data put into it. There must be enough reliable data to constrain the

model, if any parameters have to be estimated then it must be shown that the results of the

simulation are not affected by variations in these parameters. Constraining simulations

with experimental data is the biggest problem to overcome when doing realistic models of

the brain. Many brains systems cannot yet be realistically modeled because sufficient data

does not yet exist. Only in the last few years has sufficient data become available (and

computers become powerful enough) to attempt realistic cellular models of primary visual

cortex.
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Secondly, the model neurons and synapses must be accurate representations of the

known experimental data. Fortunately cable theory (Rall 1964) and Hodgkin Huxley

voltage-dependent conductance dynamics (Hodgkin and Huxley 1952) have been proven

to provide robust descriptions of single neuron synaptic integration and active responses.

These systems of equations have been incorporated into a simulation package known as

NEURON (Hines 1989), which through its various incarnations has been the simulator I

have used for most the simulations presented in this thesis. Beyond the single neuron level

there are other issues of accuracy in representation to be considered. Once such issue,

forced on us by the limits of computer power, is how to represent single cells in network

simulations containing hundreds or thousands of units. The large compartmental models

used for single cell studies take up too much memory and run too slowly, as well as being

simply to unwieldy for convenient use in network simulations. The third chapter in this

thesis addresses this issue, introducing a technique to drastically reduce the complexity of

compartmental neuron representations while preserving their essential electrotonic

properties.

The common theme running through the other three chapters (I have to thank my

supervisor, Terry Sejnowski, for steering me in this direction) is the role of inhibition in

cortex. The prevalent view of the role of cortical inhibition until very recently was as a

negator or veto of inappropriate, broadly tuned excitation (Martin 1988). As well as

seeming intuitively quite reasonable, this theory appeared to be supported by strong

experimental evidence (Silli to 1975). However, later experimental and theoretical work

challenged the assumption that cortical stimulus selectivity is based on strong inhibition of

inappropriate excitation (Douglas et al. 1988; Koch et al. 1990; Ferster 1986) and even

suggested that inhibition in cortex is not strong enough to suppress neurons receiving

strong excitatory input (Douglas and Martin 1990a). In Chapter 2 the effect and strength

of inhibition is assessed in single cell simulations based on experiment. It is shown that
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although strong and effective inhibition can be evoked during physiological synaptic

stimulation, such inhibition must be transient and not responsible for sustained inhibition of

excitatory input. Chapters 3 and 4 investigate a paradigm in which such strong, transient

inhibition not only occurs but creates the characteristic network dynamics. This paradigm

is synchronized oscill atory activity, a phenomenon observed in a wide range of

experimental preparations (Singer 1993) and the subject of significant speculation as to its

role (Crick and Koch 1990).

The work presented here is a beginning in the field of realistic modeling of cortical

microcircuitry. It has involved itself in one of the fundamental principles of cortical

circuitry operation; the role of inhibition. However, it is only a starting point, and even a

full model of a cortical column of this type would not provide all the answers as to how a

canonical cortical microcircuit functions. This is because the type of model I have worked

on to date does not include learning or plasticity. Cortical circuitry is not static, the

synaptic strengths and perhaps the physical connections constantly change as the cortex

does its job. Once the basic properties of a cortical microcircuit have been established it is

most likely that the circuit will have to be considered in the context of learning and change

in order for us to be able to fully understand its function. Studying the static circuit is

equivalent to studying the single cell in isolation - an essential step but it cannot lead to a

comprehensive theory of cortex.
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CHAPTER II

Effects of Inhibition and Dendritic Saturation in

Simulated Neocortical Pyramidal Cells

Summary and Conclusions

1.  We have used compartmental models of reconstructed pyramidal neurons from

layers 2 and 5 of cat visual cortex to investigate the nonlinear summation of excitatory

synaptic input and the effectiveness of inhibitory input in countering this excitation.

2.  In simulations that match the conditions of a recent experiment (Ferster &

Jagadeesh, 1992), dendritic saturation was significant for physiological levels of synaptic

activation: A compound excitatory postsynaptic potential (EPSP) electrically evoked

during a depolarization caused by physiological synaptic activation was decreased by up to

80% compared to an EPSP evoked at rest.

3.  Synaptic inhibition must be coactivated with excitation to quantitatively match

the experimental results. The experimentally observed coactivation of inhibition with

excitation produced additional current shunts that amplified the decrease in test EPSP

amplitude. About 30% of the experimentally-observed decrease in EPSP amplitude was



10

caused by decreases in input resistance (Rin) due to synaptic conductance changes; a

reduced driving force accounted for the remaining decrease.

4.  The amount of inhibition was then increased by nearly an order of magnitude,

to about 10% of the total number of inhibitory synapses on a typical cortical pyramidal

cell. The sustained firing of this many inhibitory inputs was sufficient to completely

suppress the firing of a neuron receiving strong excitatory input. However, this level of

inhibition produced a very large reduction in Rin. Such large reductions in Rin have not

been observed experimentally, suggesting that inhibition in cortex does not act to veto

(shunt) strong, sustained excitatory input (of order 100 ms).

5.  We propose instead that strong, transient activation (< 10 ms) of a neuron's

inhibitory inputs, sufficient to briefly prevent firing, is used to shape the temporal structure

of the cell 's output spike train. Specifically, cortical inhibition may serve to synchronize the

firing of groups of pyramidal cells during optimal stimulation.

Introduction

The traditional function assigned to inhibition in cortex is to oppose excitation,

acting to veto or shape the response of cortical cells by negating inappropriate excitation

(Koch et al., 1987). Evidence for this view was provided by blocking inhibition with

bicuculine and observing a decrease in the response selectivity of cortical neurons (Silli to,

1975). However, theoretical studies (Koch et al., 1990) have shown that inhibition strong

enough to veto (shunt) significant amounts of excitatory current should produce

measurable decreases in Rin of the neuron in question. Such decreases in Rin have never

been seen in vivo when cortical neurons do not respond to non-preferred stimuli (Berman

et al., 1991; Douglas et al., 1988), and electrically-evoked thalamocortical EPSPs are not
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reduced in amplitude during visual stimulation at the nonpreferred orientation (Ferster &

Jagadeesh, 1992). These results have led to the conclusion that cortical neurons receive

neither excitatory nor inhibitory input in response to non-preferred stimuli (Berman et al.,

1991). This conclusion is supported by results showing that both the excitation and the

inhibition that a cortical neuron receives are tuned to the preferred orientation (Ferster,

1986).

Thus it is becoming clear that the role of cortical inhibition is more complex than a

veto of sustained, untuned excitation. A number of other functions for inhibition have been

proposed: Recent physiological experiments using dual gratings (Bonds, 1989) have

suggested that a general, non-selective inhibition acts as to normalize cortical responses.

This idea receives direct anatomical support from the recent demonstration that large

basket cells send (inhibitory) inputs to regions representing all orientaions, not just iso- or

cross-orientations (Kisvardy & Eysel, 1993). Douglas and Martin have proposed that

cortical inhibition acts to increase the threshold of target neurons and gate intracortical re-

excitation (Douglas & Martin, 1992). In order to remain in a state that is sensitive to

inputs, the excitation and inhibition to a cortical cell should be balanced (Bell, Mainen &

Sejnowski (unpublished data)).

In order to study these issues we have simulated a recent experiment (Ferster and

Jagadeesh 1992) that used in vivo whole cell patch recording of neocortical neurons to

study interactions between synaptic inputs. We have applied a compartmental model to the

data of Ferster and Jagadeesh (1992) and shown that they are consistent with nonlinear

interactions occurring in dendrites between excitatory inputs alone and between excitatory

and inhibitory inputs. The same model was then used to determine conditions under which

inhibition can prevent the firing of a neuron receiving synaptic excitation that is strong

enough to cause it to discharge at high rates, and how much Rin would change under

these conditions. Our results, consistent with the experimental data, lead to a hypothesis in
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which inhibition is strongly activated during periods of maximum excitation, yet not in a

manner that causes a suppression of the firing response.

Methods

Simulations were performed using standard techniques for compartmental models

of branching dendritic trees (Rall, 1964); two

digitized HRP-fill ed pyramidal cells from layers 2 and 5 of cat visual cortex  (Koch et al.,

1990) were modeled (Fig. 1), each having approximately 400 coupled cylindrical

compartments containing only resistive and capacitative elements. The simulator CABLE

(Hines, 1989), running on a MIPS Magnum 3000/33, required about 1 minute of

computation to simulate 100 ms of real time.

Passive parameters

Appropriate values of the passive parameters (specific membrane resistance, Rm,

specific membrane capacitance, Cm, and specific axial resistance, Ri) were selected: Cm

for neuronal membrane has a long-established value of 1 µF/cm2  (Jack et al., 1975). The

accepted value of Ri, at least in the mammalian central nervous system, has recently been

revised upwards from its traditional value of about 70 Ωcm for a number of reasons: 1)

Voltage responses to brief current pulses could not be modeled accurately with a small Ri

(Segev et al., 1992; Shelton, 1985; Stratford et al., 1989). 2) When modeling cerebellar

Purkinje cells, a larger Ri was necessary to produce significant attenuation of action

potentials as they invade the dendritic tree (Bush & Sejnowski, 1991) 3) A large Ri was

needed to explain the observed somatic to dendritic input conductance ratio and steady-
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state voltage attenuation of Purkinje cells (for a discussion of this issue see Shelton

(1985)). The value chosen for Ri in this study was 200 Ωcm (Bernander et al., 1991;

Segev et al., 1992; Shelton, 1985; Stratford et al., 1989).

Once Ri, Cm and the morphology have been fixed, the value chosen for Rm will

determine Rin, the time constant, τm, and the length constant, λ, of the cell. Recent results

using whole-cell patch electrodes and Cs+-fill ed sharp electrodes have increased the

estimate of Rm from its traditional value of 5-10 kΩcm2 to a value of 50 to 100 kΩcm2

(Andersen et al., 1990; Major et al., 1990; Spruston & Johnston, 1992; Staley et al.,

1992),  giving Rin’s in the range of a GΩ. However, these results were not obtained in

vivo, where the effect of background synaptic activity is such that a neuron with a Rm of

100 kΩcm2 and can have an effective Rin as low as 20 MΩ and an effective τm of around

20 ms when part of an active in vivo circuit (Bernander et al., 1991; Rapp et al., 1992).

The background synaptic input decreases the effective average Rm of an in vivo neuron in

a way that can be accurately taken into account by simply using a lower value for the

effective Rm in the model (Barrett & Crill , 1974; Bernander et al., 1991; Holmes &

Woody, 1989). A sample of 25 visual cortical neurons recorded using sharp electrodes in

vivo had Rin’s ranging from 10 to 153 MΩ (mean 69 MΩ) (Douglas et al., 1991). Two

independent measurements of visual cortical neurons recorded using whole-cell patch

electrodes in vivo  had Rin’s ranging from 50 to 200 MΩ (Ferster & Jagadeesh, 1992) and

50 to 150 MΩ (Pei et al., 1991). The range of Rin values reported by these studies are

similar. Values for Rin of 50 to 150 MΩ are closer to values obtained from the best sharp

electrode in vitro recordings (Tanaka et al., 1991) than to the hundreds of MΩ obtained

using whole-cell clamping in vitro.

With a Cm of 1 µF/cm2 and Ri of 200 Ωcm, we found that using a value of 20

kΩcm2 for Rm produced Rin’s for the model layer 5 and layer 2 pyramidal cells of 45 MΩ

and 110 MΩ, respectively. The layer 2 cell had a greater Rin because it was smaller. With
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these parameters (the standard model) both model cells have a dendritic τm of 20 ms,

which is a typical value for neocortical cells (Bernander et al., 1991).

Though we believe that these values produce an accurate model of the in vivo

neocortical pyramidal neuron, there is still considerable controversy surrounding "correct"

values for the passive parameters Rm and Ri. Consequently, all simulations were repeated

using values for Ri of 70, 200 and 500 Ωcm and values for Rm of 5, 20 and 100 kΩcm2.

We focus on results obtained with the standard model (the default for all simulations),

which we believe to be the most accurate fit to a functioning pyramidal cell, but we also

present and discuss results obtained using the full range of values for Rm and Ri. In

general we found only a quantitative, rather than a qualitative, difference between

simulations using different parameter values, and none of our conclusions depend on

precise values.

Synaptic conductances

EPSPs and inhibitory postsynaptic potentials (IPSPs) in our models were simulated

as alpha function conductance changes with a peak amplitude of 0.5 nS and a time to peak

of 1 ms. EPSPs had a reversal potential of 0 mV and IPSPs a reversal potential of -70 mV

(Connors et al., 1988; McCormick, 1989). These parameters were chosen because they

produced EPSPs at the soma with the same time course and amplitude as those observed

experimentally (Mason et al., 1991; Thomson et al., 1988). Some simulations were done

with synapses on explicitly modeled spines. In these cases we used the same 2-

compartment model spine morphology as Qian and Sejnowski (1989), with spine neck

dimensions 1 µm x 0.1 µm and head 0.69 µm x 0.3 µm. Trains of EPSPs or IPSPs were

modeled according to a Poisson distribution with a mean frequency that is stated for each

case. The resting membrane potential was -65 mV.
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Active conductances

For some simulations active conductances were placed at the soma to generate

adapting trains of action potentials, as observed in regular-firing cortical neurons

(McCormick et al., 1985). The action potential was mediated by fast sodium and

potassium conductances (gNa + gKd). A high threshold calcium conductance (gCa),

activated by each spike, introduced calcium into the cell. Intracellular calcium accumulated

in the soma compartment and decayed exponentially to its resting value with a time

constant of 20 ms (Traub et al., 1991). A slow calcium-sensitive potassium conductance

(gKca) was included to produce the adaptation of firing rate. All the conductances used the

Hodgkin-Huxley-like kinetics parameters developed by Borg-Graham (Borg-Graham,

1987), except for gKca which had an activation rate equal to 200 times the intracellular

calcium concentration (in ms-1) and a deactivation rate equal to the reciprocal of the

activation rate. The implementation of our kinetic scheme follows that of Lytton and

Sejnowski (1991). Briefly, each ionic current, I, was calculated from

I = g mn h(V - Er) (1)

where g is maximal conductance, m is the activation variable, n is the exponent, h is the

inactivation variable (gNa only), V is membrane potential and Er is the reversal potential of

the ion concerned. The calcium current was calculated using the Goldman-Hodgkin-Katz

equation (Hill e, 1984), with gCa the calcium permeabili ty. The time- and voltage-

dependent variable, m, converged on a steady state value, minf, given by

minf = αm/(αm+βm)
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with a time constant, tm, given by

tm = 1/(αm+βm)

The rate constants αm and βm were defined by the equations

αm = a0 exp[zg(V-V1/2)F]/RT

βm = b0 exp[-z(1-g)(V-V1/2)F]/RT

where F is the Faraday constant, R is the gas constant and T is temperature. The kinetics

of each channel was determined by the values assigned to the parameters a0,b0,z,g and

V1/2. A similar set of equations governed the inactivation variable, h, and its steady state

value, hinf. The values of all the parameters used in the model are shown in Table 1.

Results

Dendritic saturation

Dendrites have a much higher input impedance than the soma (Rinzel & Rall,

1974); thus even single EPSPs can produce significant local depolarization and reduce the

driving force on simultaneous and subsequent EPSPs on the same dendritic branch. In

addition, synaptic conductances add to the resting membrane conductance of the neuron

(Barrett & Crill , 1974; Bernander et al., 1991; Holmes & Woody, 1989; Rapp et al., 1992)

(see Methods). This effective decrease in Rm and increase in λ also results in reduced
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depolarizations for simultaneous and subsequent EPSPs. We refer to these two

phenomena collectively as the dendritic saturation effect, although the term ‘saturation’

does not necessarily imply that the membrane is at the synaptic reversal potential or that

Rm has been effectively reduced to zero.

There is some direct experimental evidence for saturation during synaptic

activation under physiological conditions. Ferster and Jagadeesh (1992) have

demonstrated that the size of an EPSP evoked in visual cortical cells by electrical

stimulation of the LGN was reduced during depolarizations caused by visual stimulation

compared to its size at the resting potential. The reduction in EPSP size was proportional

to the somatic depolarization caused by the visual stimulation. Thus, an EPSP that peaked

at about 6 mV at rest was reduced to less than 1 mV when the cell was depolarized from a

resting potential of -60 mV to a potential of -40 mV by visual stimulation (Fig. 3a)

(Ferster & Jagadeesh, 1992).

Ferster and Jagadeesh interpreted their results as evidence that the synaptic sites

(dendrites) were significantly more depolarized than the soma during synaptic activation of

the cell, thus producing saturation by the process described above. We have tested this

hypothesis by  simulating their experiment, and the results are shown in Figs. 2 and 3. The

model layer 2 pyramidal cell was used because its morphology (Fig. 1) is reasonably close

to that of the putative layer 4 spiny stellate cells that Ferster and Jagadeesh studied. A

constant current of -0.1 nA was injected starting at 30 ms to prevent firing during the

synaptic activation, as in the experiments of Ferster and Jagadeesh. Visual stimulation was

simulated by 70 excitatory synapses placed randomly on the basal/oblique dendrites,

activated by a Poisson process at some mean frequency (for example, 50Hz) starting at 80

ms. 35 additional excitatory synapses were placed on the same dendritic segments as

the initial 70, and were given a single simultaneous stimulation at 5 ms and again at 150

ms. The firing of these 35 synapses represented the effects of electrical stimulation of the
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LGN: the first stimulation gave a control EPSP, the second, occurring during ‘visual

stimulation’ , gave a test EPSP. Different trials using a different seed for the random

number generator produced Poisson-distributed trains of EPSPs. One such trial is shown

in Fig. 2 (upper trace). The test EPSP was significantly reduced with respect to the control

EPSP (by 34% in this case).

Effects of spines

The saturation effect underlying the reduction in EPSP amplitude was dependent

on the membrane potential at the synaptic site. Excitatory synapses on real pyramidal cells

are made onto spines, not onto dendritic shafts. It was conceivable that the small

dimensions, and hence higher input resistance, of a spine head relative to that of a

dendritic shaft might lead to greater saturation effects for EPSPs on spines vs. shafts

(Segev & Rall, 1988). Consequently, we performed some simulations with excitatory

synapses on spine heads rather than dendritic shafts. For a single 0.5 nS EPSP, there was

very little difference in the depolarization recorded at the soma for a synapse on the head

of a spine vs. on the dendritic shaft; the activation of synapses on spines produced a

somatic peak amplitude more than 90% of that from synapses on the shaft. Significant

saturation of single EPSPs due to the passive

properties of the spine (Douglas & Martin, 1990b) was only observed if the peak EPSP

conductance was increased to several nS. EPSPs produced by these conductance changes

were larger than those typically observed in neocortical pyramidal cells (Mason et al.,

1991).

To simulate the experiment of Ferster and Jagadeesh with spines explicitly

included, 70 spines were placed on the 70 basal dendritic compartments chosen above,

then 35 more were added to provide the control and test EPSPs. The result of the
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simulation with all excitatory synapses on spines (lower trace, Fig. 2) was not significantly

different from that with all excitatory synapses directly on dendritic shafts (upper trace).

The presence of spines did not make a difference over the full range of ‘visual stimulation’

frequencies used. We also found very little difference between simulations using 35 0.2 nS

test synapses and those using 14 0.5 nS test synapses.

Although spines may be of great significance in some contexts (Zador et al., 1990),

we were only concerned here with ensuring that our results would not be significantly

affected by placing all the excitatory synapses on dendritic shafts rather than on spine

heads. Fig. 2 shows that this approach is justfied. For this reason, in the remaining

simulations spines were not included.

Effect of excitation on saturation

Fig. 3b shows the results of multiple trials at different frequencies of ‘visual

stimulation’ . Higher frequencies of excitatory input produced greater somatic

depolarization, as would occur in a cell as the visual stimulus was presented at increasingly

optimal values of orientation, velocity and direction. The peak amplitude of the EPSP is

plotted against the somatic membrane potential (Vm) just before the EPSP occurs. As in

the experimental data (Fig. 3a), the amplitude of the evoked EPSP decreased linearly with

Vm. The dendrites were depolarized to between -25 mV and -20 mV during maximal

synaptic activation, which means that the EPSP driving force was reduced by about 60%.

Since the test EPSP was reduced by about 80% during maximal synaptic activation (Fig.

3b), a reduction in EPSP size of approximately 20% was due to a reduction in Rin caused

by the excitatory synaptic input. A more detailed, quantitative description of changes in

Rin during synaptic activation is presented in the last section of the results.
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The results shown in Fig. 3b provide a qualitative match to those of Ferster and

Jagadeesh, but the difference between the level of somatic and dendritic depolarization in

the model was not great. In addition, the slope of the relationship between EPSP height

and somatic Vm was not as steep as in the experimental data: the abscissa intercept (EPSP

reduced to 0 mV) is about -40 mV in the experimental results (Fig. 3a) and -25 mV in Fig.

3b. Ferster and Jagadeesh report that visual cortical cells cannot be depolarized by more

than 20 mV from rest by visual stimulation (Ferster & Jagadeesh, 1992). For our model

cell (resting potential -65 mV), this corresponds to complete saturation at a somatic Vm

of -45 mV.

Effect of inhibition on saturation

The difference between our simulations of dendritic saturation and the

experimental results could be due to the omission of inhibitory input in the simulation.

Recent studies (Berman et al., 1991; Douglas et al., 1988; Ferster & Jagadeesh, 1992)

have indicated that inhibitory input to visual cortical cells is weak during nonpreferred

responses and is strongly correlated with the degree of activation of the excitatory cells

(Ferster, 1986; Somers et al., 1993). This fits with anatomical evidence that spiny

excitatory cells make direct contacts with inhibitory cells, which then make direct contacts

back onto the same excitatory population (Douglas & Martin, 1991). We repeated the

simulation described above, this time including 33 inhibitory synapses, 12 on the soma and

21 on the preterminal basal/oblique dendrites. This is the pattern of innervation

characteristic of basket cells, the most common inhibitory cell type in cortex (Martin,

1988). Inhibitory (smooth) cells fire at much higher rates than pyramidal cells (McCormick

et al., 1985); therefore, inhibitory synapses were activated at a mean frequency twice that

of the excitatory synapses. Fig. 3c shows the results of including inhibition in the
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simulation. The EPSP/somatic Vm slope is steeper, with an abscissa intercept of about -35

mV. This is much closer to the experimental data of Ferster and Jagadeesh (Fig. 3a).

Dendrites were depolarized to about -30 mV during maximal synaptic activation, less than

in the excitation-alone case, yet the EPSP/somatic Vm slope is steeper with inhibition. A

dendritic depolarization to around -30 mV reduced the EPSP driving force by about 50%.

Test EPSPs were reduced in amplitude by up to 80%, so the remaining 30% must be due

to decreases in Rin caused by the excitatory and inhibitory synaptic conductance changes

(see Discussion). There may also be some contribution to the reduction in Rin and hence

EPSP amplitude from intrinsic sub-threshold voltage-dependent conductances during the

experiments of Ferster and Jagadeesh. The simulations of Fig. 3 did not include voltage-

dependent conductances, so we cannot evaluate the extent of this contribution, but the

simulations of Bernander et al. (1991) indicate that it is likely to be relatively small.

Ferster and Jagadeesh (1992) focused on reduction in driving force as the

explanation for the decreases in evoked EPSP amplitude that they observed, but we found

that decreases in Rin (decrease in effective Rm) due to excitatory inputs made a significant

contribution. Furthermore, additional current shunts due to inhibitory synaptic activity

must be included to produce an accurate fit to the experimental data. The data in Fig. 3c

fall along a straight line because the major component of the saturation effect is due to the

linear reduction in driving force. The contribution from increased membrane conductance,

which would produce a concave (hyperbolic) curve, is masked by the driving force effect

and the variance in the data. When inhibition was included in the simulation the soma

could not be depolarized past -45 mV by the firing of the 70 excitatory synapses, which is

the limit of depolarization obtainable with optimal visual stimulation reported by Ferster

and Jagadeesh (1992).
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Fig. 3d shows that the decrease in test EPSP amplitude due to dendritic saturation

is stable across a wide range of values for Rm and Ri. The rate of decrease of EPSP

amplitude with somatic Vm was constant over the full parameter range.

Fig. 4 displays in higher resolution dendritic (dashed lines) and somatic (solid lines)

membrane potentials at the time of the test EPSP (arrow) for synaptic input with (lower

traces) and without (upper traces) inhibition. A number of important points are ill ustrated:

Because of a higher Rin, the dendrite is more depolarized than the soma (and this dendrite

is less depolarized than most), with larger voltage fluctuations due to the influence of

individual PSPs. The dendrite is less hyperpolarized than the soma by the inhibition

because the inhibitory synapses are proximal and act by shunting current that passes from

the dendrites to the soma. The effect of inhibition is to increase the slope of the test

EPSP/somatic Vm graph (Fig. 3c), so at the low input rate shown here inhibition causes a

small increase in the size of the test EPSP by slightly hyperpolarizing the membrane thus

increasing the excitatory synaptic driving force. GABAA inhibition, the type we are

modelli ng here, acts by increasing membrane conductance rather than directly

hyperpolarizing the membrane, as its reversal potential is close to the resting membrane

potential. The driving force for inhibitory chloride conductance only exists when there is

depolarization produced by excitatory synaptic input (silent inhibition). At higher firing

rates, when the inhibitory conductance is large, the small increase in excitatory driving

force caused by the hyperpolarization, (which is minimised at the site of

the excitatory synapses by the spatial separation of the sources of excitatory and inhibitory

input, mentioned above) is more than offset by the shunting effect of the inhibition and the

test EPSP is decreased in size (Fig. 3c).

The soma could still be depolarized by 20 mV from rest even when the 33

inhibitory synapses are firing at their maximum rate (Fig. 3). This indicates that firing of

the postsynaptic cell would persist despite significant inhibition. This seems to support the
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conclusion of Douglas and Martin (1990a), who simulated the effect of a maintained

inhibitory conductance on the firing rate of a simplified model neuron driven by

intrasomatic current injection. They suggested that inhibition in cortex cannot prevent the

firing of a neuron receiving strong excitatory input. In contrast, studies in vitro indicate

that synaptically-evoked GABAA inhibition is strong enough to briefly suppress the firing

of cortical neurons driven by large depolarizing current injections (Connors et al., 1988;

McCormick, 1989), although these results must be interpreted with caution given the large

difference in GABAA conductance elicited in vivo and in vitro (Berman et al., 1989).

Effectiveness of inhibition

Under what conditions could inhibition be strong enough to suppress firing? What

is the effect of strong synaptic activation on Rin of the target neuron? These have been the

subject of previous experimental and theoretical studies (Berman et al., 1991; Douglas et

al., 1988; Koch et al., 1990). To address these issues the model layer 2 pyramid was

driven by the same concurrently active 70 excitatory and 33 inhibitory synapses as in Fig.

3. Active conductances were added to the model (Table 1) to produce adapting trains of

action potentials (Fig. 5a). Fig. 5b shows the firing rate of the model cell as a function of

the firing rate of the 70 excitatory synapses. The solid traces are results obtained without

any inhibition. The dashed traces are results obtained with the inhibitory firing rate fixed at

100 Hz, which corresponds to the simulations done by Douglas and Martin (1990a). The

crosses are the instantaneous firing rate of the model for the first interspike interval. The

boxes are the steady-state (adapted) firing rate. In agreement with Douglas and Martin,

the effect of the inhibition was to increase the threshold of the neuron and only slightly

reduce the firing rate above threshold.
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These simulations neglect the observation that inhibition is correlated with

excitation (Ferster, 1986), which would occur if the inhibitory cells were being driven by

the excitatory cells that they were inhibiting (Douglas & Martin, 1991). It is reasonable to

assume that the firing rate of the inhibitory inputs would increase with the firing rate of the

pyramidal cell, and hence with the firing rate of the pyramidal cell’s excitatory inputs (the

70 excitatory synapses). Therefore, we repeated the above simulations, this time setting

the firing rate of the inhibitory synapses to twice that of the excitatory synapses. The

results, shown in Fig. 5b (dotted traces), demonstrate that inhibitory input does have the

potential to significantly reduce the firing rate of the target cell. However, the firing rate of

the pyramidal cell was still substantial: the inhibition produced by 33 synapses is not

enough to shut off the target cell.

The simulation was repeated with the 33 somato-dendritic inhibitory synapses

replaced by 25 inhibitory synapses on the first 25 µm of an axon initial segment consisting

of 7 cylinders whose diameter tapered from 2.5 µm to 0.6 µm. This is the innervation

pattern characteristic of chandelier cells, a type of cortical inhibitory interneuron (Farinas

& DeFelipe, 1991b). Sodium and potassium spike conductances were included on the first

25 µm at the same density as on the soma (Table 1). The results (not shown) were nearly

identical to those shown in Fig. 5. Thus, we found no difference between the effect of

basket cell inhibition and that of chandelier cells (see also Lytton and Sejnowski (1991)).

Similar results were also obtained when using the layer 5 cell instead of the layer 2 cell

(not shown).

Cortical pyramidal cells receive hundreds of inhibitory synaptic contacts on their

somata and proximal dendrites (Douglas & Martin, 1990b; Farinas & DeFelipe, 1991a).

Therefore, we increased the number of active inhibitory synapses in our simulation. We

found that the activity of about 200 somatic inhibitory synapses was sufficient to prevent a

cell receiving strong excitation from firing (Fig. 5c). Consequently, strong cortical
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inhibition is able to prevent the firing of even strongly driven pyramidal cells, contrary to

previous conclusions (Douglas & Martin, 1990a). Firing was completely suppressed by

200 inhibitory inputs whether Rm of the model layer 2 pyramid was 20 or 100 kΩcm2.

When Rm was 5 kΩcm2, the resting Rin of the model cell was so low (about 35 MΩ) that

the 70 excitatory inputs did not drive the cell very strongly and the activity of just 33

inhibitory inputs was sufficient to suppress firing.

The inhibition produced by the activity of 200 inhibitory inputs caused a huge

decrease in Rin of the model neuron. Large decreases in Rin were not seen in vivo during

nonpreferred responses or sustained hyperpolarizations (Berman et al., 1991; Douglas et

al., 1988; Ferster & Jagadeesh, 1992). Thus, intracortical inhibition has the potential to

shut off the firing of even strongly activated neurons, but this type of (shunting) inhibition

has not yet been observed in cortical neurons. A possible reason for this is suggested in the

discussion.

Previous simulations have shown that Rin of a neuron must decrease by a

significant amount in order to prevent the cell from firing (Koch et al., 1990). However, as

mentioned above, a number of recent experimental tests have shown that Rin shows no

significant reduction during the nonpreferred response or even during sustained

hyperpolarizations that are part of an optimal response to a visual stimulus (Berman et al.,

1991; Douglas et al., 1988; Ferster & Jagadeesh, 1992). Tests of our model show that Rin

decreased by a significant amount during the synaptic activation used in the above

simulations (Fig. 6). Thus, if we consider decrease in Rin as an assay for inhibition, the

level of inhibition used in the simulations shown in Figs. 3 and 5b was as least as great as

the level of inhibition occurring during nonpreferred or hyperpolarizing visual responses.

This inhibition was not strong enough to counter significant synaptic excitation (Fig. 5b).

This is further evidence that the level of inhibition that occurs during nonpreferred

responses is not enough to prevent the cell from firing. It is likely that a lack of excitatory
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drive is what prevents the cell from firing during nonpreferred responses (Berman et al.,

1991; Ferster, 1986).

Table 2 shows the percentage decrease in Rin caused by weak and strong synaptic

input. The input firing rate shown is for the 70 excitatory synapses and 33 inhibitory

synapses active at twice these rates. The decrease in Rin was calculated relative to Rin at

rest in the steady state as determined by current injections many times τm in duration. The

decreases in Rin produced by even weak synaptic input were above the experimentally

detectable threshold (Berman et al., 1991) for all values of Rm and Ri. We found that

approximately half of the decrease in Rin was due to excitatory, and half to inhibitory,

synaptic conductance changes. This is not suprising since the individual synaptic

conductances were equal and there were about twice as many excitatory synapses but they

fired at half the rate of the inhibitory synapses. As noted above, the simulations of the

experiments of Ferster and Jagadeesh (1992) showed that up to 20% of the EPSP

reduction was due to decreases in Rin, even when no inhibition was present (see

Discussion). That excitatory input alone can cause significant decreases in Rin is apparent

from considering the fact that the peak conductance of just one excitatory input (0.5 nS) is

an appreciable fraction of the input conductance of a neuron (which for our model layer 2

pyramid ranged from 1.9 to 34.8 nS, depending on Rm and Ri).

Discussion

Saturation

Recent simulations of reconstructed neocortical pyramidal cells show electrotonic

compactness of the basal dendrites and oblique dendrites (lateral branches from the apical
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trunk) over a wide range of parameter values (Holmes & Woody, 1989; Stratford et al.,

1989). Dendritic branches are quite isolated from each other and have high input

impedances relative to the soma (Rinzel & Rall, 1974). Inputs on the same branch may

interact nonlinearly because synaptic currents and voltages depend on the local membrane

potential and Rin, respectively, and these in turn both depend on local synaptic activity

(Barrett & Crill , 1974; Rall, 1964; Rall, 1967). Synaptic input could act to reduce the

excitatory driving force and Rin, leading to a saturation of simultaneous and subsequent

excitatory input

In confirmation, our simulations of the experiments of Ferster and Jagadeesh

(1992) have provided evidence for two contributions to dendritic saturation: A reduction

in driving force and a reduction in Rin (shunting). Based on Eq. (1) for the membrane

current, applied to voltage-independent synaptic conductances, these two components can

be represented analytically in the equation for the peak synaptic potential, ∆V, produced

by n synapses each with their own reversal potential, Vri, undergoing conductance change

∆gi on a single compartment with resting membrane potential VL:

∆V = (Vr −VL)∆g
(gL

+ ∆g)
(2)

where Vr = Vr
i ∆gi

∆gi

n

∑
∆g = ∆gi

i

n
∑

and gL is the leak conductance. The numerator in Eq. (2) represents the driving force and

the denominator gives the shunting effect. The composite synaptic event is equivalent to a

single synapse with a reversal potential Vr that is a weighted sum of the individual reversal

potentials and a conductance equal to the sum of the individual conductances.
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All of the results we have described regarding saturation of excitatory input,

effectiveness of inhibition and changes in Rin were consistent across a wide range of

values for Rm and Ri (Table 2, Fig. 3d). The largest value for Rm we considered (100

kΩcm2) seemed unlikely to occur in vivo. This value produced a value for Rin of more

than 500 MΩ for the model layer 2 pyramidal cell, which is well outside the range

reported thus far for in vivo cortical neurons (Douglas et al., 1991; Ferster & Jagadeesh,

1992; Pei et al., 1991). This value for Rm also gave a value for τm of 100 ms. Such a large

time constant seems incompatible with neuronal processes occurring on the time scale of

tens of ms (Gray et al., 1992). In performing the simulations shown in Fig. 3, with a τm of

100 ms, the relative timing of all events had to be increased several fold because the model

neuron took hundreds of ms to reach a steady state in response to any stimulus. If cortical

neurons do have a fundamental Rm of 100 kΩcm2, the effective Rm of in vivo neurons is

likely to be much lower due to the effect of background synaptic input (Bernander et al.,

1991) (see Methods).

A number of simulations were performed with excitatory synaptic inputs on the

heads of explicitly modeled spines. The results were not significantly different from those

obtained with inputs made directly onto dendritic shafts (Fig. 2). The reason for this is that

the spine stem resistance (255 MΩ for our spines) is small compared to the inverse of the

peak synaptic conductance (2 GΩ) (Jaslove, 1992), so that nearly all the current entering

the spine head flows into the dendritic shaft (the membrane conductance of the spine is

negligible). There are, however, circumstances when the differences between spine and

shaft synaptic input can become significant (Qian & Sejnowski, 1989; Zador et al., 1990).

Synaptic excitation
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Although this study was based on simulations of single neocortical pyramidal

neurons, the results can be used to infer some of the principles of operation of the circuits

in the neocortex. One such principle, proposed 10 years ago on the basis of physiological

evidence, is that a single synapse is ineffective in firing another cell (Abeles, 1982). Since

one pyramidal cell makes on average only one or two synaptic contacts onto each of its

targets (Braitenberg & Schuz, 1991; Gabbot et al., 1987) and the vast majority of cortical

synapses are pyramidal-pyramidal contacts (White, 1989), the effect of a single neocortical

pyramid on another is almost negligible — certainly not enough to drive the postsynaptic

cell by itself (Abeles, 1982). In our simulations a single synapse firing at a mean frequency

of 100 Hz produced a somatic depolarization of less than a milli volt. Maximally activating

a whole dendritic segment (depolarizing to 0 mV using current injection) was not enough

to drive the cell to fire at the rates observed during visual stimulation.

Thus, there must be convergence of synaptic inputs from many cells to produce

significant firing (Douglas & Martin, 1990b). How many? Our model cells required tens of

synapses, active within an interval of a few milli seconds, to reach threshold. Firing at the

rates observed during visual stimulation required about a hundred synapses active at a few

hundred Hz. The saturation demonstrated in Fig. 3 indicates that the additional activation

of more synapses has a decreasing effect. Because the maximum firing rates we used for

our inputs were at the upper limits of sustained firing rates in cortex, it is likely that

maximal firing will require the activity of a few hundred presynaptic cells, as suggested for

the hippocampus (Andersen et al., 1990; Miles & Wong, 1986; Sayer et al., 1990), spinal

cord (Jack et al., 1981; Walmsley et al., 1987) and cerebellum (Rapp et al., 1992). If the

inputs were completely synchronous, a high frequency discharge could be evoked by a few

tens of active synapses (Abeles, 1982; Bush & Douglas, 1991). This ‘dynamic range’ of a

few tens to a few hundred active inputs is only a small fraction of the thousands of

synapses on a single pyramidal neuron (Douglas & Martin, 1990b). This implies that a
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pyramidal cell can be driven by any one of several different groups of presynaptic cells,

allowing the same neuron to participate in many (possibly independent) processes.

Assuming passive membrane, a single EPSP with peak conductance 0.5 nS on the

model layer 2 cell produced a somatic depolarization with a peak amplitude approximately

twice that seen in the layer 5 cell. This is because Rin of the layer 2 cell (with the same τm)

is approximately twice that of the layer 5 cell. We have found that twice as many

excitatory synapses were needed to drive the layer 5 cell to fire at the same frequency as

the layer 2 cell. This fits with the observation that large layer 5 pyramids have about twice

the number of spines as small layer 2 pyramids. However, there is as yet no experimental

evidence that single EPSPs are larger in layer 2 cells than in layer 5 cells.

Synaptic inhibition

The 33 inhibitory synapses used in the simulations of Fig. 3c,d are a fraction of the

several hundred that exist on the soma and proximal dendrites of each pyramidal cell

(Douglas & Martin, 1990b; Farinas & DeFelipe, 1991a). The activity of this small fraction

was not sufficient to prevent the firing of a cell receiving strong excitation (Fig. 5b), yet it

was enough to reduce Rin significantly (Fig. 6, Table 2). Since Rin does not decrease

during nonpreferred or hyperpolarizing responses to visual stimuli (Berman et al., 1991;

Douglas et al., 1988; Ferster & Jagadeesh, 1992), we agree with Berman et al. (1991) that

inhibition in the cortex (at least primary visual cortex) does not act to counter sustained

(longer than 50-100 ms) excitation.

What then is the role of inhibition? Inhibition is correlated with excitation (Ferster,

1986); thus maximal inhibitory activity is expected during the periods of maximum firing

caused by excitatory input. This statement may seem paradoxical, but only if the excitation

and inhibition are considered as simultaneous and sustained, without any temporal
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structure. However, analysis of inhibitory activity during visual stimulation (Fig. 14 of

Lytton and Sejnowski (1991)) reveals that compound IPSPs can occur rhythmically rather

than randomly. This might be produced by feedback inhibition generated in response to

stimulation by the same excitatory cells that the inhibition targets (Douglas & Martin,

1991). It has been shown that such a system can produce synchronization of excitatory

and inhibitory populations and consequent rhythmic IPSPs (Bush & Douglas, 1991).

Compound EPSPs are also rhythmic in this model, but are out of phase with the IPSPs. In

fact, it is the compound IPSP generated by the compound EPSP that terminates the burst

of firing in the pyramidal cells and insures synchronization (Bush & Douglas, 1991).

The activity of hundreds of inhibitory synapses would be required to generate an

IPSP capable of shutting off the firing of the pyramidal cells. In our simulations the

simultaneous activity of about 200 inhibitory synapses prevented the firing of our model

cells despite strong synaptic excitation. Such a compound IPSP would produce a very

large decrease in Rin of the target cell, but the decrease would be transient (of order 10

ms) because the inhibitory cells stop firing when no longer driven by the pyramids they

inhibit. Transient conductance changes cannot be detected by current pulse injection

(Berman et al., 1991) but it might be possible to sample the peak slope conductance at

different membrane potentials. Thus, we suggest that the role of inhibition is to

synchronize the firing of groups of pyramidal cells by rhythmically turning on transiently

but powerfully during optimal stimulation (see also Lytton and Sejnowski (1991), who

considered the efficacy of lower frequency inhibitory inputs to entrain pyramidal cells).

Our proposal reconciles the fact that effective inhibition (preventing firing of target) must

cause a large decrease in Rin with the fact that such decreases in Rin have not been seen in

vivo.

There has been very little experimental study of changes in Rin during the response

to optimal stimulation. Such experiments are hard to perform and interpret because of the
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large, rapid fluctuations in membrane potential and large supra-threshold intrinsic voltage-

dependent conductance changes occurring during these periods. Existing data show input

conductance increases of up to 40% during optimal stimulation (Berman et al., 1991). Our

results indicate that Rin should decrease substantially during optimal stimulation, but, as

with inhibition, the detectibili ty of this decrease using current pulses would depend on how

much of the excitatory input is transient and how much is sustained.

The inhibition discussed in the above argument is assumed to be GABAA

inhibition. The slower, hyperpolarizing GABAB inhibition probably has a different role

that could be investigated using a network simulation (for one suggestion see (Abbott,

1991)). In a realistic network the temporal structure of synaptic inputs would be much

closer to in vivo conditions than the random inputs used here. This would allow better

estimates of the numbers of inputs driving a pyramidal cell and a better way to study the

role of inhibition.

Our conclusion that inhibition does not act as a veto of sustained excitation is in

agreement with Berman et al. (1991). We have also replicated their results showing that a

modest level of inhibition does not prevent the firing of its target (Douglas & Martin,

1990a). However, using revised assumptions about the amount of inhibition impacting

upon a single pyramidal neuron, we have shown that a stronger level of inhibition can shut

off the firing of a strongly driven target cell. We reconcile these results by postulating that

such strong inhibition is only activated transiently, during periods of maximum excitatory

activity.

Conclusion

Neocortical pyramidal cells do not linearly integrate synaptic input, even in the

absence of active membrane properties. Despite the electrotonic compactness of pyramidal
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basal/oblique dendritic trees, saturation of excitatory input is a real phenomenon that

places a sharp limit on the number of active excitatory inputs that can contribute to the

response of a particular pyramidal cell.

Cortical inhibition can in principle suppress the firing of its targets, but a role for

inhibition as a negator of inappropriate excitatory input is not consistent with experimental

data and theoretical studies. Both data and models lead to the view that excitation and

inhibition are a synergistic pair of processes combining coactively to shape the response of

cortical neurons to optimal stimuli (Berman et al., 1991; Bush & Douglas, 1991).
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FIG. 1. Drawings of reconstructed HRP-fill ed layer 2 (right) and layer 5 (left) pyramidal
cells. Scale bar 100 um.
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FIG. 2. Simulation of reduction in amplitude of EPSP by synaptic activity. Somatic
membrane potential (Vm) during simulation of model layer 2 pyramid. A constant current
of -0.1 nA is injected into the soma at t = 30 ms to prevent firing (first asterisk), then 70
excitatory synapses are activated at a mean frequency of 50 Hz to simulate visual
stimulation (second asterisk). 35 additional synapses are given a simultaneous stimulus to
produce a control (first arrow) and test (second arrow) EPSP. The amplitude of the test
EPSP is significantly reduced with respect to the control. Upper trace is result of
simulation with all excitatory synapses directly on dendritic shafts, lower trace is result of
simulation with all synapses on the heads of dendritic spines (see methods).



41

FIG. 3. Dendritic saturation during physiological synaptic activation. (A) Experimental
data: Peak amplitude of the test EPSP plotted against Vm just before the EPSP occurred
while the visual stimulus was at the optimal orientation for the cell. Arrow 1 indicates
control EPSP (before stimulation), arrow 2 indicates test EPSP (at peak of visual
response) (reproduced by permission (Ferster & Jagadeesh, 1992)). (B) Simulation of the
experiment in A, as detailed in Fig. 2. Peak amplitude of the test EPSP plotted against Vm
just before the EPSP occurred, for a variety of firing frequencies of the 70 excitatory
synapses; H = 0 Hz, E = 25 Hz, G = 50 Hz, I = 75 Hz, D = 100 Hz, C = 200 Hz, F = 300
Hz, J = 400 Hz. The amplitude of the EPSP decreased linearly with Vm. (C) Concurrent
inhibition is included in the simulation (33 inhibitory synapses at twice frequency of
excitatory synapses). (D) Simulations in C repeated for Rm values of 5 (solid), 20 (dashed)
and 100 (dotted traces) kΩcm2 and Ri values of 70 (E), 200 (G) and 500 (C) Ωcm. Data
plotted for excitatory input frequencies of 0, 25, 100, 200 and 400 Hz. Each point is the
average of five trials.
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FIG. 4. Effect of inhibition on dendritic saturation at low input rates. Dendritic (dashed
lines) and somatic (solid lines) membrane potentials during the application of the test
EPSP (arrow) with (lower traces) and without (upper traces) inhibitory input are shown.
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FIG. 5. Effect of inhibition on firing rate of synaptically activated model layer 2 pyramid.
(A) Adapting train of action potentials produced by 70 excitatory inputs active at a mean
frequency of 200 Hz. (B) Firing rate of model as a function of the firing rate of its 70
excitatory inputs. I = Initial, peak firing rate. G = Steady, adapted firing rate. Solid traces
are results without inhibition. Dashed traces are results with 33 additional, inhibitory
synapses firing at 100 Hz. This level of inhibition has little effect on the strongly activated
pyramid. Dotted traces are results with the firing rate of the inhibitory inputs equal to
twice that of the excitatory inputs in each case. This more realistic level of inhibition
causes a significant decrease in the firing rate of the pyramid, although firing is not
completely suppressed. (C) Firing is completely suppressed when an additional 150
somatic inhibitory inputs, starting firing at a mean frequency of 400 Hz at t = 100 ms, are
added to the simulation shown in A.
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FIG 6. Decrease in input resistance of model layer 2 pyramidal cell during synaptic
activation. At 100 ms, 70 excitatory synapses and 33 inhibitory synapses were activated at
200 Hz and 400 Hz, respectively. Upper trace is current injected into model soma (-0.3
nA each 30 ms pulse, to conform with protocol of Berman et al. (1991)), lower trace is
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voltage response of model. Size of voltage deflection to each pulse gives measure of input
resistance of cell. Voltage deflection is significantly smaller during synaptic activation (last
4 pulses) than at rest (first pulse). Decrease in input resistance is actually larger than
measured here, because cell is not fully charged by the pulse at rest but is fully charged by
the pulses during synaptic activation. This is due to the cell’s smaller time constant during
synaptic activation. Data in Table 2 is calculated using the real (steady-state) input
resistance of the cell.
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TABLE 1  Parameters for active conductances

Channel Er g z g a0,b0 V1/2 tmin T n
(mV) (mS/cm2) (ms) (oC)

Na(m) 45 40 4.3 0.7 4.2 -38 0.05 37 3
Na(h) -6 0.5 0.2 -42 0.5 37 1
Kd -90 30 3 0.7 0.03 -35 1.0 24 4
Ca N/A   0.6 6 0.7 1 -15 0.1 37 1
KCa -90 10 see text
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TABLE 2  Percentage Decrease in Rin during concurrent synaptic excitation and inhibition

Rm(kΩcm2) 5 5 20 20 100 100

Input firing
rate (Hz)

50 400 50 400 50 400

Ri(Ωcm)
70 16.0 41.5 42.3 74.2 82.6 94.2
200 15.3 39.2 45.5 72.6 78.1 91.9
500 15.1 37.6 39.5 70.0 80.0 91.8
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CHAPTER III

Reduced Compartmental Models of Neocortical Pyramidal Cells

Abstract

Model neurons composed of hundreds of compartments are currently used for

studying phenomena at the level of the single cell. Large network simulations require a

simplified model of a single neuron that retains the electrotonic and synaptic integrative

properties of the real cell. We introduce a method for reducing the number of

compartments of neocortical pyramidal neuron models (from 400 to 8-9 compartments)

through a simple collapsing method based on conserving the axial resistance rather than

the surface area of the dendritic tree. The reduced models retain the general morphology

of the pyramidal cells on which they are based, allowing the accurate positioning of

synaptic inputs and ionic conductances on individual model cells, as well as the

construction of spatially accurate network models. The reduced models run significantly

faster than the full models, yet faithfully reproduce their electrical responses.

Introduction
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Compartmental computer models have been used to investigate many aspects of

single neurons, including passive properties (Rall 1964, Shelton 1985), the role of active

conductances in producing observed firing behavior (Yamada et al. 1989, Bush and

Sejnowski 1991), and synaptic integration (Rall 1967, Shepherd et al. 1985, Fleshman et

al. 1988, Clements and Redman 1989, Bernander et al. 1991, Lytton and Sejnowski 1991,

Segev et al. 1992, Bush and Sejnowski 1992). The models used in these studies contain

hundreds of compartments and thousands of coupled differential equations must be solved

each time step. To speed up simulations, model networks use simplified representations of

the single neurons that comprise the network.

Most model neurons composed of just a few compartments have been assigned a

somewhat arbitrary geometry, with no systematic testing of the reduced model against the

real cell or a more complete model (Wilson and Bower 1989, Traub 1982, Lytton and

Sejnowski 1991, Wehmeier et al. 1989). Such models may have the same input resistance

(Rin) and membrane time constant (τm) as the real cell, but typically will not accurately

simulate the integration of synaptic inputs in the dendritic compartments and the resulting

flow of current into the soma. Recent experimental and theoretical evidence indicates that

the electrotonic structure of cortical neurons causes significant nonlinearities in the

integration of synaptic input (Ferster and Jagadeesh 1991, Ferster and Jagadeesh 1992,

Bush and Sejnowski 1992). It is still an open question as to whether such effects are

important at the level of network function, but it would be prudent to ensure that a

simplified model neuron destined for network simulation is an as accurate representation

of the real cell as possible.

An example of a simplified model neuron that does retain the electrotonic

characteristics of the full model is the 'cartoon representation' developed by Stratford et al.

(1989). This is a model of a cortical pyramidal cell reduced to 24 compartments by using a
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number of mathematical transformations to collapse the basal and apical dendritic trees

into equivalent profiles, then collapsing all the oblique dendrites (lateral branches from the

apical trunk) that are at the same electrotonic distance from the soma. Stratford et al.

demonstrated that the cartoon model is a good fit to the full model in terms of its response

to transient current injections at different locations as well as displaying the same Rin and

τm. We have combined this approach with a simpler method to construct an alternative

cartoon representation that allowed us to achieve fewer compartments yet retain accurate

electrical properties.

Methods

Simulations were performed using standard techniques for compartmental models

of branching dendritic trees (Rall 1964); two digitized HRP-fill ed pyramidal cells from cat

visual cortex (layers 2 and 5) (Koch et al. 1990) were modeled, each consisting of coupled

cylindrical compartments containing only resistive and capacitative elements. The full

models against which the reduced models were tested had approximately 400

compartments (Fig 1A), and have been used in a number of previous studies (Koch et al.

1990, Lytton and Sejnowski 1991, Bernander et al. 1991, Bush and Sejnowski 1992). The

simulator CABLE (Hines 1989), running on a MIPS Magnum 3000/33, required about 1

minute of computation to simulate 100 ms of real time for the full models. The reduced

models ran approximately 5 times faster in simulations that included a full set of voltage-

and ligand-gated conductances.

Model parameters
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The choice of values for the passive parameters (specific membrane resistance, Rm,

specific membrane capacitance, Cm, and axial resistivity, Ri) for pyramidal cells has

recently been discussed (Bush and Sejnowski 1992). Following that study, we used Cm =

1 µF/cm2  (Jack et al. 1975), Ri = 200 Ωcm (Bernander et al. 1991, Shelton 1985,

Stratford et al. 1989, Segev et al. 1992) and Rm = 20 000 Ωcm2. This value for Rm is the

effective specific membrane resistance for an in vivo neocortical pyramidal neuron

receiving background synaptic input from spontaneously active neurons (Barrett and Crill

1974, Bernander et al. 1991). These passive parameters produced Rin's for the model layer

5 and layer 2 pyramidal cells of 45 MΩ and 110 MΩ, respectively and a τm of 20 ms.

These values are within the range recorded from cells in cat visual cortex in vivo (Douglas

et al. 1991, Pei et al. 1991, Ferster and Jagadeesh 1992).

The inclusion of spines in a passive model may significantly increase the membrane

area of the cell (Stratford et al. 1989, Segev et al. 1992). A recent calculation has shown

that the addition of the membrane area of 4000 spines to our layer 5 pyramidal cell

increases the area by about 7.5% (Bernander et al. 1992). This can be accounted for in a

model by increasing Cm and proportionally decreasing Rm (Holmes 1989). Our values for

Rm and Cm are constrained by measurements of Rin and τm and are not based on direct

measurement. Thus, if we assume that adding spines increases the membrane area of our

pyramidal cells by, for example, 20%, we revise our estimate of Rm to 24 kΩcm2 and our

estimate of Cm to 0.8 µF/cm2. These values are then decreased and increased,

respectively, to account for spine membrane, producing the values that we use in our

model. We have found very little difference between results obtained with excitatory

synaptic inputs on the heads of explicitly modeled spines as opposed to those obtained

with inputs made directly onto dendritic shafts (Bush and Sejnowski 1992). Thus, in these

simulations synaptic inputs were made directly onto dendritic shafts.
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Excitatory and inhibitory postsynaptic potentials (EPSPs and IPSPs) in our models

were simulated as alpha function conductance changes with a peak amplitude of 0.5 nS

and a time to peak of 1 ms (Rall 1967, Bernander et al. 1991). These parameters were

chosen because they produced EPSPs at the soma with the same time course and

amplitude as those observed experimentally (Mason et al. 1991, Thomson et al. 1988).

The reversal potential for EPSPs was 0 mV and the reversal potential for IPSPs was -70

mV (Connors et al. 1988, McCormick 1989). Trains of EPSPs or IPSPs were modeled

according to a Poisson distribution with a fixed mean frequency of activation.

For some simulations, active conductances were placed at the soma to generate

adapting trains of action potentials, as observed in regular-firing cortical neurons

(McCormick et al. 1985). The conductances followed Hodgkin-Huxley-like kinetics based

on parameters developed by Borg-Graham (1987). The implementation was exactly as

described in Bush and Sejnowski (1992).

Reduced compartmental models

When reducing a compartmental model to one with fewer compartments, Rm, Cm

and Ri should be preserved so that the reduced model will have same the same Rin, τm and

length constant, λ, as the full model. Pyramidal cells do not obey Rall's constraints for

collapse into a single equivalent cylinder (Stratford et al. 1989, Douglas and Martin 1991),

so other approaches must be tried. Surface area (hence Rm and Cm) can be conserved by

constructing an 'equivalent dendritic profile' (Fleshman et al. 1988, Clements and Redman

1989, Stratford et al. 1989, Manor et al. 1991). In this technique the sum of the diameters

to the 3/2 power of all the dendrites at regular intervals from the soma are used to

compute the diameter of an equivalent dendrite. The length of the equivalent dendrite

must also be scaled appropriately. As shown by Stratford et al., the equivalent profile has
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the same Rin and τm as the full model but the degree of attenuation of synaptic input along

the length of the apical dendrite is not large enough. This is because the axial resistance of

the equivalent profile is not equal to the axial resistance of the apical dendrite, due to the

lumping of the oblique dendrites into the profile. The cartoon model developed by

Stratford et al. (1989) solved this problem by explicitly representing the oblique dendrites

as sidebranches from the apical trunk.

An alternative approach to the cartoon representation is a collapsing technique

based on conserving Ri rather than the membrane surface area. This is done by making the

cross-sectional area of the equivalent cylinder equal to the sum of the cross-sectional areas

of all the dendrites represented by that equivalent cylinder:

  
R = ri

2

i
∑

(1)

Where R is the radius of the equivalent cylinder and ri is the radius of dendrite i. The

length of the equivalent cylinder is just the average length of all the dendrites represented

by the equivalent cylinder.

We have applied this collapsing technique to create a new reduced pyramidal cell

model. First, all dendrites with approximately the same origin and (electrotonic) length are

collapsed into a single equivalent cable. Thus, all the preterminal basal dendritic segments

(Larkman 1991a) were collapsed together into an equivalent cylinder, as were all the

terminal basal dendritic segments. The distal apical dendritic aborization was also

collapsed together. The main apical dendrite was reduced to 2 or 3 equivalent cylinders.

To insure the correct attenuation along the apical dendrite, the oblique dendrites were

represented as a single sidebranch from the apical trunk. Some fine tuning of the structure

obtained using this method was required; in particular we found it necessary to use two

paired basal dendritic compartments rather than one. This was to ensure a large enough
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dendritic load on the soma while maintaining the correct attenuation from dendrites to

soma: A single large-diameter cylinder does not show great enough attenuation of

synaptic input. The somatic compartment had the same dimensions as in the full model.

The surface areas of our reduced models are less than those of the full models.

Thus the next step in the reduction was to scale the values used for Rm and Cm

appropriately. Ri was conserved, so Rm could be changed until the reduced model had the

same Rin as the full model. We found that Rm had to be reduced by 2.84 times to match

the Rin of the reduced layer 5 cell model with that of the full layer 5 cell model. Rm had to

be reduced by 2.95 times to match the Rin of the reduced layer 2 cell model with that of

its full model. Cm must then be multiplied by this scaling factor to match τm of the

reduced cell to that of the full cell. This procedure is a correction for the reduction in

surface area, and indeed if an approximate calculation of the ratio of the areas of the full

and reduced layer 5 cell model is made by summing up the areas of all the cylindrical

compartments in each model, a value of 2.74 is obtained, which is quite close to the

empirical scaling factor of 2.84. The dimensions of the reduced models are given in Table

1.

Our collapsing method is simpler than that of Stratford et al. and allowed us to

produce accurate models composed of less than 10 compartments. In addition, the lengths

of our equivalent dendrites were equal to the average lengths of the dendrites which they

represent. This is important when incorporating these models into spatially accurate

networks.

Our method takes advantage of some of the morphological features of neocortical

pyramidal cells: All the dendrites collapsed together into an equivalent cylinder have

approximately equal lengths and diameters, as well as equivalent electrotonic origins. It

should be possible to construct similar models of other types of neurons using our method

if their dendritic morphologies display these features.
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Results

The geometries of the reduced model layer 2 and layer 5 pyramidal cells are shown

in Fig. 1B. Drawings of the HRP-fill ed pyramidal cells are included for comparison (Fig.

1A). In order to assess the accuracy of the method that produced the reduced models, we

compared the responses of the reduced and full models to different types of stimulation.

The response of the reduced and the full model layer 5 pyramid to a continuous somatic

current injection of -0.7 nA are compared in Fig. 2A. The superposition of the two traces

shows that both models have the same Rin and τm. It is relatively easy to match these

parameters by tuning Rm and Cm. Such a match says little about how faithfully the

reduced model captures the synaptic integration properties of the full model (Fleshman et

al. 1988). The responses of the reduced and the full model layer 2 pyramid to a brief

somatic current injection are compared in Fig. 2B (Stratford et al. 1989, Shelton 1985).

The response to a transient somatic input is dependent on Ri as well as Rm and Cm,

because it is dependent on how fast current moves from the soma into the dendrites. The

response of the reduced model is a good fit to that of the full model. The responses of

both models to an EPSP on the soma, with 0.5 nS peak conductance are compared in Fig.

2C. This tests essentially the same properties as the brief current pulse; the performance of

the reduced model is very close to that of the full model.

Fig. 3A shows the firing of the full 400 compartment layer 5 cell in response to a

maintained 1 nA somatic current injection. The

model cell produced an adapting spike train typical of the regular-firing class of cortical

pyramidal cells (McCormick et al. 1985). The

conductances underlying this firing behavior, located in the soma only, were put into the 9

compartment model without changing a single parameter. Because both models have the
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same somatic dimensions, the same conductance densities were used in both. Fig. 3B

shows the firing of the 9 compartment model in response to a 1 nA somatic current

injection. The response of the reduced model has the same form as that of the full model

— an adapting train of action potentials. The firing frequency of the reduced model was

slightly higher, but the small difference was within the limits of uncertainty of the model

parameters as well as the variance in response recorded across different pyramidal cells

(McCormick et al. 1985, Douglas et al. 1991).

The final test was to compare the response of both models to synaptic input. To

produce the same output as the full model, the reduced model must perform the same

nonlinear integration of dendritic EPSPs and IPSPs as the full model (Bush and Sejnowski

1992), and display the same dendrites-to-soma transfer characteristics. In other words, the

reduced model must have the same input-output function as the full model.

A majority (70-90%) of excitatory inputs to cortical pyramidal cells are made on

the basal/oblique dendrites (Larkman 1991b). We distributed synapses on the dendrites

and soma to reflect these measurements. Thus, 140 excitatory synapses were placed

randomly on the basal and oblique dendrites of the full model and 140 on the 1

oblique and 2 basal equivalent dendrites of the reduced model. In addition, 33 inhibitory

synapses were placed on the proximal

dendrites and 12 on the soma of each model, a pattern of innervation characteristic of

basket cells, the most common inhibitory cell type in cortex (Martin 1988). Inhibitory

(smooth) cells fire at much higher rates than pyramidal cells (McCormick et al. 1985),

therefore inhibitory synapses were activated at a mean frequency twice that of the

excitatory synapses. Fig. 3C shows the responses of the full and reduced models for the

peak (initial) and steady-state (adapted) firing rates as a function of the frequency of the

excitatory inputs. The fit is close for all input frequencies, demonstrating that the reduced
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model shows about the same dendritic integration characteristics and response to

inhibition as the full model, despite having an extremely simplified structure.

Discussion

Given current computational limi tations, simulation of a large, realistic network

requires a model cell with a minimal number of compartments. The reduced pyramidal cell

model presented here is a good fit to the full model for a variety of stimuli (Figs. 2 and 3),

and is suitable for network simulations involving multiple, spatially-separated synaptic

inputs to the neurons.

The Rin of an equivalent dendrite of the reduced model is not as large as the Rin of

one of the dendrites represented by the equivalent dendrite. Hence, a single EPSP on an

equivalent dendrite of the reduced model is not equivalent to a single EPSP on a single

dendrite of the full model. Rather it would be equivalent to dividing the EPSP and

applying one fraction to each of the real dendrites represented by the equivalent dendrite.

Thus, the reduced model is not appropriate for studying the effect of single synaptic inputs

on single dendritic branches of pyramidal cells or local dendritic processing in general. For

example, we would not use this reduced model to investigate clustering of individual

synaptic inputs or the inhibitory control of specific dendrites. Such studies must use more

detailed models that represent each process of the neuron explicitly. However, we found

that the membrane potential of the basal dendrites of the reduced model was equal to the

mean potential of the basal dendrites of the full model during multiple synaptic activation

(eg. Fig. 3C), giving us some confidence that the voltage-dependent processes (such as

NMDA) occurring in the dendrites (as well as the soma) during multiple synaptic

activation could be accurately simulated with the reduced model.
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FIG. 1. A) Drawings of reconstructed HRP-fill ed layer 2 (right) and layer 5 (left)
pyramidal cells. B) Geometries of reduced pyramidal cell models (see Table 1 for lengths
and diameters of each compartment).
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FIG. 2. Comparison of the response of the reduced (R) and full (F) models to somatic
input. A) Voltage response at the soma of reduced and full layer 5 pyramid models to
constant current injection of -0.7 nA. The superposition of the two traces indicates that
both models have the same Rin and τm. B) Semi-log plot of voltage response of reduced
and full layer 2 models to a 0.44 ms 0.3 nA somatic current injection at t = 5 ms. C)
Voltage response of both layer 2 models to a 0.5 nS somatic EPSP. The close fit of the
reduced model with the full model to these transient inputs indicates that the dendrites
conduct charge away from the soma at the same rate in both models.
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FIG. 3. Comparison of firing responses of reduced and full model layer 5 pyramidal cell.
The somata of both models contain active conductances with exactly the same kinetics and
densities. A) Adapting spike train of full model in response to constant 1 nA somatic
current pulse. B) Spike train of reduced model in response to same stimulus. The response
of the reduced model is of the same form as that of the full cell, but the firing frequency is
slightly higher. C) Firing rate of full (solid traces) and reduced (dashed traces) models as a
function of the firing rate of their 140 excitatory inputs. Each model also receives 45
inhibitory synapses, active at twice the rate of the excitatory ones. I = Initial, peak firing
rate. G = Steady, adapted firing rate. The close fit of the two models demonstrates that the
reduced model integrates excitatory and inhibitory synaptic input in the same manner as
the full model.
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TABLE 1  Dimensions of reduced models

  Layer 5 pyramid Layer 2 pyramid

length(um)  diameter(um)       length(um) diameter(um)

soma   23   17   21 15.3

apical trunk   60     6   35   2.5

obliques 150     3 200   2.3

apical #1 400     4.4 180   2.4

apical #2 400     2.9   -   -

apical tuft 250     2 140   2

basal trunk   50     4   50   2.5

basals (2) 150     5 150   1.6
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CHAPTER IV

Synchronization of bursting action potential discharge in a model network of

neocortical neurons

Abstract

We have used the morphology derived from single horse radish peroxidase-labelled

neurons, known membrane conductance properties and microanatomy to construct a

model neocortical network that exhibits synchronized bursting. The network was

composed of interconnected pyramidal (excitatory) neurons with different intrinsic burst

frequencies, and smooth (inhibitory) neurons that provided global feedback inhibition to

all of the pyramids. When the network was activated by geniculocortical afferents the

burst discharges of the pyramids quickly became synchronized with zero average phase-

shift. The synchronization was strongly dependent on global feedback inhibition, which

acted to group the co-activated bursts generated by intracortical re-excitation. Our results

suggest that the synchronized bursting observed between cortical neurons responding to

coherent visual stimuli is a simple consequence of the principles of intra-cortical

connectivity.
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Introduction

Recently there have been a number of reports that neurons in the visual cortex that

respond to related features in the visual scene tend to synchronize their action potential

discharge (Gray and Singer, 1989; Gray et al., 1990; Engel et al., 1990). This finding has

attracted considerable attention because it may reflect a process whereby the cortex binds

coherent visual features into objects (Crick, 1984; von der Malsburg and Schneider,

1986). Typically, the synchronization is observed between neurons that have Complex

receptive field responses, and that have bursting rather than regular (Connors et al., 1982)

discharge patterns. Theoretical analyses (Kammen et al., 1990) and simulations of

connectionist networks (Sporns et al., 1989) have examined the conditions required for

coherent neural activity but the detailed neuronal mechanism of synchronization has not

been studied. In this paper we address this problem using a network of cortical neurons

with realistic morphology and excitability.

Model Cortical Network

The network was composed of model pyramidal and smooth cortical neurons.

Each neuron was represented by a compartmental model that consisted of a series of

cylindrical dendritic segments and an elli psoidal soma (Figure 1a,b). The dimensions of

these compartments were obtained by simplification of the detailed morphology of a

pyramidal neuron and a basket neuron that had been intracellularly labelled with

horseradish peroxidase (Douglas and Martin, 1990a). Each of the compartments contained

an appropriate profile of passive, voltage-dependent, calcium-dependent, and synaptic
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conductances. Active conductances had Hodgkin-Huxley-like dynamics, except that time

constants were independent of voltage. Passive properties of the model cell were obtained

from intracellular recordings made in the real cell. The magnitudes and dynamics of the

conductances, and the implementation of the compartmental simulation were similar to

that described elsewhere in the literature (Traub et al., 1987; Getting, 1989; Douglas and

Martin 1990a). The relevant parameters are listed in Table 1.

The cortical network consisted of ten bursting pyramidal neurons and one basket

neuron (Figure 1c). The bursting behaviour of the pyramids was dependent on a small,

transient delayed rectifier (gKd) and a large calcium-dependent potassium conductance

(gKCa). The reduced spike afterhyperpolarization that resulted from a small fast gKd

encouraged a high frequency burst of action potentials and rapid accumulation of

intracellular calcium. The burst was terminated by the hyperpolarization induced by gKCa.

The inter-burst interval depended on the rate of calcium removal (buffering) from the

intracellular compartment. Each of the ten pyramidal cells was assigned a slightly different

intracellular calcium decay rate so that their natural burst frequencies ranged between 18

and 37Hz for a 1nA intra-somatic current injection. The active conductances were located

in the somatic compartment. Smooth cells have shorter spike durations, higher discharge

rates, and show less adaptation than regular firing pyramidal cells (Connors et al., 1982).

These characteristics were achieved in the model smooth cell by retaining only the spike

conductances, gNa and gKd, both of which were large and fast.

Each neuron represented the activity of a population of neurons of that type. The

activities of these populations were measured as their average action potential discharge

rates. The individual spikes of the representative neurons were used to estimate the

average discharge rates of their respective populations. This was done by convolving each

of the spikes of the representative neuron with a gamma interspike interval distribution.

The shape parameter of the distribution was held constant (α=2). The mean interspike
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interval of the distribution was defined as the previous interspike interval of the

representative neuron. Thus the interspike interval distribution became more compact at

higher discharge frequencies. The lateral geniculate input to the pyramidal cells was

modelled as a continuous discharge rate. The form of the input was a step-like function,

and in some cases a noise component was added (Figure 4b).

The synaptic effect of a given population on its target neuron was computed from

the average population discharge rate, maximum synaptic conductance, and synaptic

conductance time-constants (Table 1). The distributions of inputs from various sources

onto visual cortical cells are not accurately known. However, both asymmetric and

symmetric synapses tend to cluster on the proximal dendrites of cortical neurons (White,

1989), and so in this simplified model we assigned all contacts to the proximal basal

dendrites. We assumed that one excitatory synaptic input would contribute a somatic epsp

with a peak amplitude of about 100µV. Thus, roughly 200 synchronous inputs are

required to drive the post-synaptic cell to threshold, and about 600 to reach maximum

discharge. In preliminary simulations we confirmed that this range of inputs could

effectively drive a postsynaptic neuron if the maximum single synapse excitatory

conductance was set to about 0.5nS. This and all other maximum synaptic conductances

were determined at a presynaptic discharge rate of 300spikes/s. Anatomical studies

indicate (for review of neocortical circuitry see Martin, 1988; Douglas and Martin, 1990b)

that any particular cortical pyramid makes only about 1 contact with its post-synaptic

target. This means that a reasonable size for the co-activating population is about 600

pyramids, which is about 10% of the total excitatory input to a typical pyramidal cell. In

the final simulations the population of 600 pyramidal cells comprised 10 subpopulations of

60 neurons, each population having a different characteristic burst frequency.

Each single thalamic afferent supplies only about 1 synapse to any single post-

synaptic neuron. We found that the input of about 40-80 such LGN afferents was suitable
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for activating the network, if the maximum single thalamic synaptic conductance was also

set to about 0.5nS. This number of cells represents roughly 10% of the total number of

LGN contacts received by a pyramidal neuron.

The inhibitory population consisted of 100 neurons, each of which made 5

synapses onto each pyramidal target. The maximum single inhibitory synaptic conductance

was 1nS.

The model network was simulated using the program CANON (written in

TurboPascal by RJD, Douglas and Martin, 1990a), which executes on an AT-type

microcomputer running under DOS. Simulation of 1 second of model time required about

3 hours of computation on a 16MHz 286AT.

Results and Discussion

Our initial simulations examined the bursting behaviour of pyramidal populations in

the absence of either excitatory or inhibitory intracortical connections (Figure 2a,b). All of

the pyramidal populations received the same constant thalamic input (Figure 4b, half

amplitude of dashed trace). As anticipated, each of the pyramidal populations displayed

bursting activity, and their burst frequencies differed according to their intrinsic

characteristics. For example, the characteristic burst frequencies of the two cells shown in

Figure 2a,b were 22Hz and 37Hz respectively when they were stimulated directly using an

1nA intra-somatic current injection. The same two pyramids displayed burst frequencies of

9Hz and 15Hz when activated by this particular geniculate input, and these frequencies are

reflected in their power spectra (Figure 2a,b adjacent to voltage traces). The cross-

correlation between these two cells (Figure 2e, upper trace) has very little power near zero

time, confirming the lack of burst synchronization apparent from the time traces.
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Introduction of excitatory intracortical connections between the pyramidal

populations did not improve synchronization. On the contrary, the intracortical re-

excitation implicit in these connections drove all of the pyramids to very high discharge

rates (Compare time traces and power spectra of Figure 2a,b with c,d). The higher

frequency intrinsic bursters fired continuously (Figure 2d). The cross-correlations between

pyramids confirmed the lack of synchronization (Figure 2e, lower trace; no zero peak).

Introduction of a common inhibitory population (Figure 1c) led to a marked

improvement in synchronization of pyramidal burst discharges (compare Figure 3a,b with

Figure 2a-d). This is reflected in the marked increase in the zero peak of the cross-

correlation (Figure 3d). Comparison of the power spectra of the synchronized cells

(Figure 3 a,b) with their uncoupled, un-inhibited counterparts (Figure 2 a,b) shows that

the synchronization process forces neurons with quite different burst frequencies (9Hz and

15Hz in these examples) towards a common burst frequency (averaging 17Hz in this

example). The excitatory connections between the pyramidal populations provide a strong

intra-cortical excitatory component that combines with the geniculate input (Douglas and

Martin, 1990a). This enhanced average excitation rapidly initiates global bursting, while

the common inhibitory feedback truncates the bursts that occur in each population and so

improves the synchronization of subsequent burst cycles.

The synchronization of bursts is more robust than the periodicity of the bursts

(Figure 3,4). This explains why the cross-correlations have a prominent zero peak, but

relatively small side lobes. The inter-burst interval is dependent on both the post-burst

hyperpolarization, and the strength of inhibition from the inhibitory population. The latter

is in turn dependent on the average size of the previous burst in all the pyramids. This

complex interdependence between events in many cells causes the interburst interval

within a particular population to vary chaotically, even in the presence of constant

thalamic input. This behaviour is very similar to that seen in real cortical neurons. For
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example, compare the response of the model pyramids (Figure 3a,b 4a,c) with the

intracellular signal derived from a real Complex cell during presentation of a preferred

visual stimulus (Figure 3c). This in vivo recording was made in a layer 3 neuron of cat

primary visual cortex (Douglas and Martin, unpublished).

Figure 4 shows the results of a simulation in which noise was added to the output

of the geniculate populations. Comparison of Figure 4a,c with Figure 3a,b and the

presence of a strong peak at zero time in the cross-correlation (Figure 4e, upper trace)

indicate that burst synchronization was remarkably resistant to the noise superimposed on

the geniculate input. The higher average burst frequency (23Hz) compared with the noise-

free case (17Hz) (Figure 3a,b) is due to a larger geniculate signal.

The synchronization evolved rapidly, and was well established within about 100ms

(2 bursts) of the onset of the pyramidal response. No particular population lead the

bursting of the network. Instead the phase relations between any two populations changed

chaotically from cycle to cycle so that the average phase between the cells remained zero

(Figure 4, cross-correlation), as is seen in vivo (Engel et al., 1990). The onset of discharge

in the inhibitory population necessarily lags behind the onset of the earliest bursts in

pyramidal populations. However, the onset of inhibitory discharge occurred within about

5ms of the onset of the earliest pyramidal bursts and before the onset of the latest burst.

Thus, we do not expect that the phase shift of inhibitory cells with respect to pyramidal

cells will be easy to detect experimentally.

We found that the performance of the model was rather insensitive to the detailed

cellular organization of the network as specified by the number of cells per population,

number of synaptic contacts and magnitude of synaptic effect. The crucial organizational

principle was the presence of cortical re-excitation and adequate global feedback

inhibition. Evidence for these circuits has been found in intracellular recordings from cat

visual cortex (Douglas and Martin, 1990a). This finding is consistent with the
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mathematical proof of Kammen et al. (1990) that a number of oscill atory units driving a

common feedback comparator can converge to a common oscill atory solution. However,

our results indicate that synchronization occurs even in the presence of chaotic bursting

discharge, when oscill ation is not a prominent feature. Our results bear a qualitative

similarity to those of Traub et al. (1987). The main difference is that in the case presented

here fast, concentrated inhibition produces tightly coherent, high frequency (20Hz rather

than 2-3Hz) bursting across the pyramidal populations.

Much has been written recently concerning oscillations in the neocortex.

However, burst synchronization is the most compelli ng feature of our model cortical

network. The inter-burst intervals were not regular, instead they varied chaotically.

Consequently the power spectra of the discharges were broad, as has been noted in vivo

(Freeman and van Dijk, 1987). Synchronous bursts from large populations converging on

a postsynaptic target cell will produce very large transient depolarizations, which would be

optimal for activating NMDA receptors. This suggests the possibili ty that learning occurs

at times of synchronization. Coherent bursting may permit selective enhancement of

synapses of common target neurons. If all inputs to the target cell are bursting rather than

constant the chances of false correlations between different coherent populations are

reduced. Moreover, varied interburst intervals could help to avoid phase locking between

different sets of rhythmic signals impinging on the common target.

Conclusion

Our results suggest that the synchronized bursting observed in vivo between

cortical neurons responding to coherent visual stimuli is a simple consequence of the

known principles of intra-cortical connectivity. Two principles are involved. Firstly, intra-
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cortical re-excitation by pyramidal collaterals amplifies the geniculate input signal and

drives the co-activating pyramidal cells into strong coherent discharge. Secondly, global

feedback inhibition converts the integrated burst discharges into a global reset signal that

synchronizes the onset of the subsequent cycle in all the bursting pyramidal cells. Future

work must investigate the processes that dynamically connect and disconnect populations

of neurons to form coherent networks, the elements of which are then synchronized by the

mechanisms outlined in this paper.
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Figure 1:   (a) Layer 5 pyramidal cell from cat primary visual cortex intracellularly labelled
with HRP and reconstructed in 3 dimensions (Douglas and Martin, 1990a).  (b) Simplified
compartmental model of the pyramidal cell.  (c) Cortical network composed of model
neurons. Each of ten populations (4 shown as rectangular boxes) composed of pyramidal
cells (fill ed shapes) receives input from the LGN. Each pyramidal population sends
afferents to all nine other pyramidal populations, and also to the common smooth cell
population (box containing open stellate shape). The smooth cell population feeds back to
all ten pyramidal populations.
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Figure 2:   Response of partially connected model network to constant thalamic input (half
amplitude of dashed trace in Figure 4b). In this and following Figures : power spectra are
shown to the right of time traces; cross-correlations are shown at the foot of the figure;
the amplitudes of the cortical power spectra are all to the same arbitrary scale, the LGN
spectra (Figure 4b,d) are to a separate scale.  (a) Pyramidal cell with no intra-cortical
connections bursts rhythmically at 9Hz (fundamental frequency in adjacent power
spectrum of voltage trace).  (b) A different cell oscill ates at 15Hz to same input. Cross-
correlation of the output of these two cells (e, upper trace) exhibits no peak at zero time,
indicating no correlation between these two signals.  (c) Response of the same model cell
as in a, but now including reciprocal excitatory connections to all 9 other populations. The
consequent enhanced excitation results in higher frequency discharge (50-60Hz, see
adjacent power spectrum).  (d) Enhanced excitation causes the intrinsically higher
frequency cell shown in b to latch up into continuous discharge. In this example all the
power is at 200-300Hz, which is off-scale. Cross correlation of latter two traces (lower
trace in e) indicates that their discharge is not synchronized.



81

Figure 3:   Response of fully connected model network to constant thalamic input (half
amplitude of dashed trace in 4b).  (a,b) Response of same cells shown in Figure 2a,c, but
now incorporating common feedback inhibition (Figure 1c). The bursts in the two
populations are synchronized, as indicated by the prominent zero peak in their cross-
correlation (upper trace in d, for comparison lower trace is same as Figure 1e). Their
common inter-burst frequency (17Hz) is reflected in their power spectra. Notice that each
cell fires only in synchrony with the others. If a cell misses a burst (arrowed in b) then it
fires again only on the next cycle.   (c) Response of real complex cell in cat primary visual
cortex to optimally orientated moving bar (Douglas and Martin, unpublished). Compare
with model responses in Figure 3b,c and Figure 4a,c. Note missed burst (arrowed).
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Figure 4:   Synchronization is not dependent on identical, constant thalamic input. In this
example five pyramidal populations were driven by LGN input shown in b, the other five
by input shown in d. Inputs are the sum of a constant signal (dashed trace in b) plus noise
with 24% power of signal. Comparison of the outputs of the highest and lowest intrinsic
frequency cells (a and c) show that the burst synchronization is not diminished by this
procedure. As in Figure 3, superposition of peaks of power spectra and prominent zero
peak on cross-corellogram (e, upper trace) confirm synchronization of pyramidal
population discharges. The synchronization is lost if intracortical connections are removed
(e, lower trace). Notice that the peaks of power spectra of LGN input (b and d) do not
coincide with those of the model output (a and c), indicating that the cortical interburst
frequency (averaging 23Hz) is insensitive to the spectral characteristics of the LGN input.
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Table 1. Model parameters

Pyramidal Cells:
resting potential -66mV
axial resistance 200ohmcm

specific membrane capacitance 2µF/cm2

leak conductance 0.1 mS/cm2

calcium decay time constant 7-20ms

spike Na conductance 400ms/cm2

τm 0.05ms

τh 0.5ms

delayed rectifier K conductance 80mS/cm2

τm 0.5ms

persistent Na conductance 2mS/cm2

τm 2ms

calcium-dependent K conductance 15mS/cm2

τm 2ms

'A-current' K conductance 2mS/cm2

τm 20ms

τh 100ms

calcium conductance 0.5mS/cm2

τm 2ms

EPSP synaptic conductance (300s/s) 0.5nS
EPSP τm 5ms

EPSP τh 10ms

IPSP synaptic conductance (300s/s) 1nS
IPSP τm 2ms

IPSP τh 3ms

Smooth Cells:
resting potential -66mV
axial resistance 100ohmcm

specific membrane capacitance 2µF/cm2

leak conductance 0.1 mS/cm2
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spike Na conductance 700mS/cm2

τm 0.05ms

τh 0.5ms

delayed rectifier K conductance 400mS/cm2

τm 0.2ms

EPSP synaptic conductance (300s/s) 0.5nS
EPSP τm 0.1ms

EPSP τh 0.1ms

axon conduction delay + synaptic delay 2ms
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CHAPTER V

Inhibition Synchronizes Sparsely Connected Cortical Neurons Within and Between

Columns in Realistic Network Models.

Abstract

Networks of compartmental model neurons were used to investigate the

biophysical basis of the synchronization observed between sparsely-connected neurons in

neocortex. A model of a single column in layer 5 consisted of 100 model neurons: 80

pyramidal and 20 inhibitory. The pyramidal cells had conductances that caused intrinsic

repetitive bursting at different frequencies when driven with the same input. When

connected randomly with a connection density of 10%, a single model column displayed

synchronous oscill atory action potentials in response to stationary, uncorrelated Poisson

spike-train inputs. Synchrony required a high ratio of inhibitory to excitatory synaptic

strength; the optimal ratio was 4:1, within the range observed in cortex. The synchrony

was insensitive to variation in amplitudes of postsynaptic potentials and synaptic delay

times, even when the mean synaptic delay times were varied over the range 1 to 7 ms.

Synchrony was found to be sensitive to the strength of reciprocal inhibition between the
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inhibitory neurons in one column: Too weak or too strong reciprocal inhibition degraded

intra-columnar synchrony. The only parameter that affected the oscill ation frequency of

the network was the strength of the external driving input which could shift the frequency

between 35 to 60 Hz. The same results were obtained using a model column of 1000

neurons with a connection density of 5%, except that the oscillation became more regular.

Synchronization between cortical columns was studied in a model consisting of

two columns with 100 model neurons each. When connections were made with a density

of 3% between the pyramidal cells of each column there was no inter-columnar synchrony

and in some cases the columns oscill ated 180o out of phase with each other. Only when

connections from the pyramidal cells in each column to the inhibitory cells in the other

column were added was synchrony between the columns observed. This synchrony was

established within one or two cycles of the oscill ation and there was on average zero ms

phase difference between the two columns. Unlike the intra-columnar synchronization, the

inter-columnar synchronization was found to be sensitive to the synaptic delay: A mean

delay of greater than 5 ms virtually abolished synchronization between columns.

Introduction

Although the traditional role for inhibition has been to regulate the level of

excitation, recent experimental and modeling studies suggest an additional function for

inhibition in cortex: Regulating the timing of action potential occurrence (Gray et al.,

1992; Lytton & Sejnowski, 1991; Bush & Sejnowski, 1994). In this study, we explore the

influence of inhibition on the temporal pattern of spike firing both within and between

columns consisting of small networks of sparsely connected model neurons.
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Synchronous oscill atory firing of populations of cortical neurons at frequencies

around 40 Hz has been observed within and between many different cortical areas in

primates and cats both awake and anaesthetized (for recent review see Singer (1993)). It

has been proposed that this synchronous activity is used to group separated parts of single

objects (Engel et al., 1991a; Sporns et al., 1991) and even signal visual awareness (Crick

& Koch, 1990). Although there is still much debate as to the role and significance of

synchrony, it is generally agreed that many cortical neurons can fire synchronously under

some conditions. Therefore, it is worthwhile to discover exactly how cortical tissue

generates and sustains synchronized oscill atory firing of its component neurons, both

within a single column and between columns that may be located in different hemispheres

(Engel et al., 1991b). For simplicity, we have restricted our model to a single layer of

cortex (layer 5). Slice experiments have shown that isolated layer 5 is capable of intrinsic

generation of oscill atory activity, although at lower frequencies than those discussed here

(Silva et al., 1991). It is possible that intrinsic bursting cells in vivo have significantly

higher bursting frequencies than those in vitro, and it is also possible that there are other

populations of intrinsic bursting cells with different intrinsic frequencies (McCormick et

al., 1993).

A number of other studies have modeled synchronized oscill ations in cortex at a

simpler level of physiological realism, many of them focusing on how such activity might

be useful, for example in perceptual grouping (Koenig & Schill en, 1991; Sporns et al.,

1989). This study does not address the function of synchronization; instead we have

constructed a physiologically realistic network model based on ionic currents and

conductances, with every parameter directly representing a physiological variable. We

intended to determine whether the presently available data on the physiology and

microanatomy of cortex are sufficient to explain how synchronized oscill atory firing

occurs and how certain physiological variables affect this activity. We found both intra-
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and inter-columnar synchronization to be robust to changes in parameters known to have a

wide degree of variation in cortex. Some parameters did affect synchronization, such as

the degree of connectivity and the involvement and interaction of inhibitory interneurons.

A previous pilot study (Bush & Douglas, 1991), using a simplified biophysical

model of a cortical column, established a basic mechanism for cortical synchronization to

arise. This model included a number of simplifications: It consisted of only 11 fully

connected cells and each synapse had to be spread out in time as well as increased in

amplitude to compensate. One of the simplifications led to an artifactual phenomenon

explained in the Discussion. The present model is a much more faithful simulation of a

piece of cortical tissue, incorporating a more realistic model reduced cell, many more cells,

sparse connectivity and connections between as well as within columns. This more

accurate model not only produced results that were better fits to the experimental data,

but also allowed us to determine systematically how and in what way each physiological

variable affected synchronization, which was not possible with the simpler model.

We have also modeled the interactions that occur between columns. When long-

range horizontal connections between columns were first discovered in neocortex they

seemed to imply a paradox: These connections extended far beyond the receptive fields of

single cells, yet stimulating the surrounding area outside the receptive fields of undriven

cells was not effective in driving them (Gilbert et al., 1990). This suggested that perhaps

these connections were relatively weak, and indeed the density of synaptic connectivity is

much higher within a column than between columns (Kisvarday & Eysel, 1992; Martin,

1988). Although excitatory postsynaptic potentials (EPSPs) can be generated in neurons

when long range horizontal afferents are stimulated, it is not possible to generate action

potentials by stimulating these fibers alone (Hirsch & Gilbert, 1991). This suggests that

these connections might have more of a modulatory role. We have used our model to

simulate inter-columnar connectivity to explore this possibility.
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Methods

Model neurons

Simulations were performed using standard techniques for compartmental models

of branching dendritic trees (Rall, 1964). The primary neuron used in our networks was a

layer 5 pyramidal neuron modeled by 9 compartments. This model neuron was reduced

from a 400 compartment model of a reconstructed cat visual cortex pyramidal cell (Koch

et al., 1990) using a method that preserves essential electrotonic parameters (Bush &

Sejnowski, 1993). The reduced model pyramidal cell had a specific membrane resistance

Rm = 7042 Ωcm2 and a specific capacitance Cm = 2.84 µ F/cm2 which produced an input

resistance Rin = 45 MΩ and a membrane time constant τm = 20 ms. Since approximately

20% of neocortical cells are inhibitory (Douglas & Martin, 1990) 20% of our cells were 7

compartment inhibitory (basket) neurons (not based on a reconstructed cell) with Cm =

2.21 µ  F/cm2 and Rm = 6800 Ωcm2 giving an Rin = 164 MΩ and τm = 15 ms. The

values of Cm and Rm for the reduced cells are respectively larger and smaller than for the

full cells to compensate for the reduction in surface area (Bush & Sejnowski, 1993). For

all model cells the axial resistivity was 200 Ωcm and the resting membrane potential was -

55 mV (‘ resting’ assumes background synaptic activity producing a steady

depolarization). The values chosen for these passive parameters are within the typical

range observed in neocortical cells in vivo and are have been discussed elsewhere (Bush &

Sejnowski, 1994).

Each model neuron had Hodgkin-Huxley-type active conductances at the soma

only. These conductances were implemented exactly as described in Bush & Sejnowski
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(1994), using a kinetic scheme developed by Borg-Graham (1987). The pyramidal cells

had fast sodium and potassium conductances (gNa + gKd) to produce action potentials, a

fast high-threshold calcium conductance (gCa) to introduce calcium into the cell during

each spike, and a calcium-dependent potassium conductance (gKca) to produce

hyperpolarizations that terminated bursts of spikes. Intracellular calcium accumulated in

the soma compartment and decayed exponentially to its resting value with a time constant

that was different for each cell, between 10-50 ms. The different calcium decay rates gave

each pyramidal cell a different intrinsic bursting frequency. The basket cells had only fast

sodium and potassium conductances and fired continuous trains of high-frequency spikes

to constant current input. Fig. 1 shows the intrinsic firing properties of the model

pyramidal and baskets cells.

During network simulations noise was injected into the soma of every model

neuron in the form of a current that changed every time step to a random number

uniformly distributed between positive and negative 1 nA for pyramidal cells and 0.3 nA

for basket cells. This method produced a varying resting membrane potential similar to

that seen in vivo due to background synaptic inputs, without changing Rin and τm. This

background noise made synchronization more difficult and produced a background resting

firing rate of a few Hz.

Synaptic connectivity

Synaptic conductances were modeled using an alpha function conductance change

(1 ms to peak) activated on the postsynaptic dendrite with some delay after the

presynaptic spike (Bernander et al., 1991). Peak amplitudes and synaptic delays for each

connection were randomly assigned according to a gaussian distribution with a standard

deviation equal to half the mean. This reproduced the large range of delays and
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postsynaptic potential (PSP) amplitudes observed experimentally. The mean synaptic delay

time was 1.2 ms with a fixed minimum of 0.5 ms (Mason et al., 1991; Nicoll &

Blakemore, 1990). Mean peak PSP amplitudes were varied but were typically 1-2 nS

except for inhibitory synapses on pyramidal cells, which were typically 4-8 nS. This

reflects the observations of (Komatsu et al., 1988) who found that single inhibitory

conductance changes were significantly larger than single excitatory ones. This may reflect

the fact that basket cells typically make multiple synaptic contacts on the proximal

dendrites of a target pyramidal cell while pyramidal cells only make one or a few contacts

per target (Somogyi et al., 1983; Gabbot et al., 1987). The reversal potential for EPSPs

was 0 mV and that for inhibitory postsynaptic potentials (IPSPs) was -65 mV (10 mV

below the resting potential) (Connors et al., 1988).

Excitatory synapses on model pyramidal cells were made on the terminal basal and

oblique dendritic compartments, whereas inhibitory synapses were made onto the soma

and proximal dendrites. Excitatory and inhibitory synapses were made onto all

compartments of the basket cells (Douglas & Martin, 1990). Pyramidal cells received

external driving input from uncorrelated Poisson spike trains. Typically each cell received

four 20 nS excitatory synapses active at a mean rate of 200 Hz. This is equivalent to a

larger number of inputs active at a lower rate.

Connectivity within a single column, at the scale of 100-200 µ m, appears to be

random in the sense that axons make contacts on all potential targets within their zone of

arborization (White, 1989). Thus, there was no spatial topography within our model

columns: Every cell had an equal chance of contacting every other cell (but no self-

connections were allowed). The density of connectivity within a column has been

estimated by dual intracellular impalement and spike-triggered averaging to be 5-15%

(Mason et al., 1991; Thomson et al., 1988; Komatsu et al., 1988), although it may be

lower in the deeper layers (Nicoll & Blakemore, 1990; Nicoll & Blakemore, 1993;
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Thomson et al., 1993). We explored a range of different connection densities: For the 100

neuron columns presented here we used a connectivity of 10%. Thus each model cell

received input from exactly 8 pyramidal cells and 2 baskets cells, randomly chosen. Since

each neuron received input from only 10 other neurons in the column, it was necessary to

add a scaling factor to the peak synaptic strengths. For a 100 neuron column with 10%

connectivity all synaptic strengths were multiplied by 10. For a 1000 neuron column with

10% connectivity no scaling factor was necessary.

In order to view rapidly and easily the average activity of the whole network an

analog of the local field potential (LFP) was calculated for each simulation, called the local

averaged potential (LAP). This was a running average of all the membrane potentials of all

the pyramidal cell somas. The presence of oscill ations in this LFP analog was an indicator

of synchronized activity in the pyramidal cell population. Our LAP is not directly

equivalent to a real LFP, which is a sum of all the local currents, both voltage- and ligand-

gated, weighted by the distance of the sources from the electrode. However, our LAP is a

direct measure of the average neuronal activity and for the task of showing synchronous

oscillations it is actually better suited than the real LFP.

A quantitative measure of the degree of synchronization between two columns is

provided by the correlation amplitude (CA), ranging from -1 to +1, which is the height of

the peak closest to zero in the cross-correlation of the two network LAPs (Gray et al.,

1992). The phase shift of this peak from zero provides a measure of the tightness of the

synchronization. For single columns the CA is measured for the first peak away from zero

in the auto-correlation of the LAP. This number reflects the regularity and amplitude of

the oscill atory discharges of the synchronized column. The phase shift of this peak gives

the period of the oscillation.
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For some data the power and phase spectra were calculated using the software

package ACE/gr (Paul Turner, Oregon Graduate Institute of Science and Technology)

which calculates the spectrum by

Power ω( )= x2 ω( )+ y2 ω( )

where x(ω) and y(ω) are the real and imaginary frequency coefficients computed by the

FFT. The phase was calculated by

Phase ω( )= tan−1 y ω( )
x ω( )

 

 
 

 

 
 

Simulations

All simulations were carried out on a MIPS Magnum 3000/33 using a modified

version of CABLE (Hines, 1989). We used a time step of 0.1 ms with 2nd order correct

numerical integration. A simulation with 100 neurons and 10% connectivity took 9

minutes of computer time to simulate 500 ms of real time.

Results

Synchronization within a single column
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Fig. 2 shows a simulation of a 100 neuron column (80 pyramidal cells, 20 basket

cells) without synaptic connections. The pyramidal cells were all driven by uncorrelated

Poisson spike train inputs at a mean frequency of 200 Hz, but they had different intrinsic

bursting frequencies because of different internal calcium elimination rates (see Methods).

The bursting was less regular than in Fig. 1 due to the injection of noise into each

pyramidal cell soma. The basket cells received no driving input and only fired a few

spontaneous spikes due to background noise. Because there were no synaptic connections,

there were no correlations between the neurons and the LAP was flat after the initial

transient burst.

Fig. 3 shows the output of the same network when the neurons were randomly

connected at a density of 10%. Oscill ations were visible in the LAP indicating

synchronized firing of the pyramidal cells (CA = 0.56 and the period of oscill ation was

22.2 ms, giving a frequency of 45 Hz). The basket cells showed evidence for bursting at

the same frequency as the pyramidal cells even thought they have no intrinsic oscill atory

properties; they are directly driven by the pyramidal cells, so the fact that they fired in

bursts is further evidence of synchronized population discharge. The mechanism of

synchronization is detailed in the Discussion.

As observed in experimental recordings in vivo (Gray et al., 1992), the

synchronization sometimes spontaneously ceased (in this case at 100 and 350 ms) and then

reappeared. The basket cell bursts in the model became less clumped at these times. Since

the driving input to the network was stationary throughout, these changes were not due to

changes in the nature of the external input. The synchronization was a statistical

phenomenon, as observed in the experimental recordings; it was often difficult to see a

regular oscill ation in the spike train of a single cell, especially if it did not fire many spikes,

and of course it was impossible to see synchronization. When examining all 7 single-cell

traces, one observes moments when the spikes all ‘ lined up’ , but even in these cases there
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was significant jitter in individual spike times. Comparing two traces spike by spike, such

as the top two pyramidal cell traces in Fig. 3, we often found few instances of

simultaneous firing, although on average both cells were locked to the underlying

oscill ation of the population (shown by the LAP). In other cases (such as the 3rd and 4th

trace) the synchronization of spike firing was clearer. It is important to have an averaged

measure of the activity of the whole population (such as the LAP shown here) to

determine if the component cells are collectively oscillating in synchrony.

In networks with 100 neurons we could not obtain good synchrony with

connection densities of less than 10%, but lower connection densities were effective when

simulating networks with more neurons. In Fig. 4, 1000 neurons were connected at a

density of 5%, with a synaptic strength scaling factor of 2 (see Methods). We obtained the

same results with a connectivity of 10% and no scaling factor; i.e. the synapses had same

strengths as in real cortex. The oscill ation and synchronization in a network of 1000

neurons was highly regular, as a consequence of the law of large numbers, although there

was still a significant amount of jitter in spike times at the level of single cell traces (CA =

0.58 and the period was 19.8 ms, giving a frequency of 50.5 Hz, slightly higher than the

100 cell network). Even though in terms of numbers this simulation may be more realistic

than the 100 neuron simulations, the output of the smaller network appears more realistic

(less regular). This is considered further in the Discussion.

The membrane potential trace of the 4th pyramidal cell in Fig. 4 is shown at a

higher temporal resolution in Fig. 5. The large compound EPSP present on each cycle of

the population oscill ation is clearly visible. Spikes only arise from the top of these

compound EPSPs, but not every compound EPSP causes a spike. This figure can be

compared to Fig. 6, an intracellular recording from a cat visual cortex neuron firing

oscill atory bursts during optimal stimulation. There is a rhythmic series of large compound
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EPSPs, some of which cause spiking. There are no spikes at other times in the phase of

the oscillation.

Sensitivity to varying parameters

The distributions of synaptic conductances and time delays in all of our simulations

had large standard deviations, so that synaptic connections with an overall mean of 1 nS

often had values as small as 0 nS and as large as 3 nS and time delays with a mean of 1.2

ms had values from 0.5 ms up to as high as 4 ms. The synchronized firing of the network

was not affected by this variabili ty, and was in general a robust phenomenon: We repeated

all of our simulations with a noise level 4 times higher than that shown here (peak current

4 nA for pyramids, 1.2 nA for basket cells - see Methods) and with a resting membrane

potential of -65 mV instead of -55 mV, but synchronized oscill ation was still present. With

some sets of parameters (such as higher connectivity, stronger inhibitory synapses and

lower resting membrane potentials) we were able to obtain even stronger synchronization,

but the values of parameters used for the simulations presented in this paper are probably

closer to those in the real cortex.

We found that increasing the mean synaptic delay within a column did not disrupt

synchronization, even when the mean delay was as large as 7.2 ms rather than 1.2 ms (not

shown). In this case, the oscill ation became more regular, with every cell firing on every

cycle and the cells with the highest intrinsic bursting frequency always leading the others.

The frequency of oscill ation of the network was also decreased due to the long duration of

each burst. The only other way we found to alter the frequency of oscill ation of the

network was to vary the strength of the external driving input. By changing this parameter

it was possible to vary the oscillation frequency of the network in the range 35-60 Hz.
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Network synchronization was generally resistant to variations in synaptic

strengths. However, inhibitory synapses had to be stronger than excitatory ones. We found

that a ratio of approximately 4:1, the value initially chosen on the basis of physiological

results (see Methods), was optimal for realistic synchronization. In networks without

inhibition, simulating the effect of bicuculine, excitatory feedback operates unconstrained

producing large paroxysmal burst discharges, with the membrane potentials of the highest

intrinsic frequency cells latching up past spike threshold (not shown). The only

inhibitory/hyperpolarizing force in these networks was the intrinsic potassium conductance

of the pyramidal cells, which was not strong enough to control the excitatory feedback.

The network was also somewhat sensitive to the strength of reciprocal inhibition

between the basket cells. Although it is known from anatomical studies that local

inhibitory interneurons make synaptic connections on each other (Douglas & Martin,

1990), very little is known about the function of these connections beyond the vague

concept of ‘disinhibition’ . Fig. 7B shows the same network LAP as in Fig. 3 (CA = 0.56)

and one of the basket cell traces. Fig. 7A is the LAP from the same network with

inhibitory contacts between basket cells removed. Synchrony was slightly weaker (CA =

0.50) because the basket cell bursts were no longer terminated by inhibitory feedback and

as a result became less discrete, sometimes continuing into the next cycle. This produced a

lower frequency of oscill ation (38 Hz compared to 45 Hz in Fig. 7B). This higher level of

inhibitory activity also resulted in less activity in the pyramidal cell population (not

shown). When synapses between baskets cells were made very strong (Fig. 7C)

synchronization was severely disrupted (CA = 0.04) . In this case basket cells were

inhibited before they could provide effective inhibition to the pyramidal cell population so

the pyramidal cells began to fire continuously instead of in synchronous bursts. Thus,

mutual inhibition between inhibitory interneurons within a single column is important for
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producing synchronized population oscill ations, but the strength of this inhibition should

not be as great as that between inhibitory cells and their pyramidal targets.

Synchronization between columns

Since synchronization has been observed between different cortical columns and

even different cortical areas (Eckhorn et al., 1988; Gray et al., 1989; Engel et al., 1991b;

Kreiter & Singer, 1992; Koenig et al., 1995) we performed simulations to examine how

synchronization arises between two columns, both internally synchronized. Two columns

of 100 neurons each were simulated, each column connected as in Fig. 3. Connections

between the columns were then added to see if synchronization between them could be

established. Long-range connections in cortex are mediated by pyramidal cell axons, and

these axons make most of their synapses on other pyramidal cells, although at a

significantly lower density than within their own column (Hirsch & Gilbert, 1991; Martin,

1988; Kisvarday & Eysel, 1992). Therefore, we started by connecting the pyramidal cells

between the two columns with a density of 2.5% (each pyramidal cell received a synapse

from 2 pyramidal cells in the other column). In this case and all other simulations using

pyramidal-pyramidal connections only, we were not able to obtain good synchronization

between the two columns (not shown). The internal synchrony of each column appeared

to be degraded and the only clear tendency we noted was for the columns to sometimes

oscill ate 180 degrees out-of-phase with each other. With some parameter choices this was

a very strong effect, but in no case did clear synchronization with zero phase lag develop

between the columns.

Long-range pyramidal cell axons make some of their synapses on dendritic shafts,

many presumably belonging to inhibitory neurons (Douglas & Martin, 1990; White, 1989).

Thus we added intercolumnar connections from pyramidal cells to basket cells to see if
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this would synchronize the two columns. Fig. 8 shows the results of a simulation with two

columns connected together at a density of 4% (each pyramidal cell received 3 synapses

and each basket cell received 4 synapses from pyramidal cells in the other column). When

the intercolumnar connections were turned on at 100 ms, the two columns immediately

began to synchronize (CA = 0.61) and maintained near zero average phase difference (1.2

ms) for the duration of the simulation. When one column spontaneously desynchronized

(eg at 350 ms) the other did too, then both rapidly resynchronized. Intercolumnar

synchronization could not be obtained by simply increasing the number of pyramidal-

pyramidal connections. Thus the pyramidal-basket intercolumnar connection, while

numerically small, was vital for intercolumnar synchronization.

Fig. 9A shows the cross correlation of two LAPs from the simulation shown in

Fig. 8. The central peak is at -1.2 ms indicating tight synchronization between the two

populations. For comparison Fig. 9B shows the cross correlation between two LAPs from

a simulation in which the two columns were not connected (CA = 0.17). In this case there

was a peak at some random non-zero position indicating that the two populations were

not synchronized with each other.

The simulation of the synchronization between the two columns in Fig. 8 was

extended for 6.5 sec. Fig. 10B shows the averaged power spectra of the two LAPs, with a

clear peak at 44 Hz, the frequency of the population oscill ation. There may be a smaller

peak near 22 Hz, a subharmonic of the main peak. Fig. 10A shows the difference between

the phase spectra of the two LAPs over the same frequency range as the power spectra.

This phase difference has large, random fluctuations at all frequencies except around the

frequency of the population oscill ation. In this region the phase difference was consistently

small, and at 44 Hz it was almost zero. This is evidence that the two populations were

oscillating at 44 Hz in phase with each other.



100

Fig. 10C,D shows the same results for the two unconnected columns. Although

there was significant power in both spectra around 40 Hz, a single peak was not as clear.

The phase difference did not decrease around 40 Hz, indicating that the two columns were

oscillating at random phase with respect to each other.

Increasing synaptic time delays between neurons within a column did not disrupt

synchronization. However, increasing the synaptic delay of the intercolumnar connections

adversely affected the synchronization of the two columns. As the delay was increased to

3-4 ms a phase shift of a few ms developed between the two populations. When the

intercolumnar delay was greater than 5 ms synchronization was severely disrupted. Fig. 11

shows two columns connected with a mean delay of 7.2 ms. The synchronization of the

two columns was weak (CA = 0.39) because the internal synchrony of each column was

weak and sporadic. We conclude that to maintain effective synchronization two columns

must be connected with a delay of approximately 5 ms or less. The implications of this

result will be considered in the Discussion.

Effectiveness of long-range horizontal axons

The results of our model suggest that intercolumnar connections mediated by long-

range horizontal axons are modulatory in function rather than directly excitatory, primarily

because of inhibition directly evoked by long-range axonal stimulation. In order to test the

validity of this result we have compared our model with an in vitro experiment directly

testing the effects of long-range axonal stimulation. Fig. 12 shows a simulation of an

experiment performed in a cat cortical slice preparation (Fig. 7 of Hirsch & Gilbert

(1991)). In the experiment, shocks of increasing strength were applied to lateral fibers in

the upper layers, presumably stimulating horizontal pyramidal axons connecting distant

columns. Synaptic responses were recorded from target pyramidal and presumed
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inhibitory interneurons. Our simulation produced the same results as the experiment: At

low stimulus strengths EPSPs were observed in both pyramidal and basket cells. Due to

the lower threshold of the basket cells, spikes were sometimes produced. As the stimulus

strength increased the basket cells fired more spikes in response; in contrast, the pyramidal

cells were inhibited by stronger shocks. This inhibition was a direct result of the response

of the basket cells. Thus, due to the relatively low numbers of inter-columnar axons and

the lower threshold of the target basket cells, the excitatory inter-columnar fibers do not

necessarily have a strong excitatory effect on their target columns.

Fig. 13 shows the output of two connected columns, the bottom one driven

normally by external input, the top receiving no external input until 350 ms. Although the

top column received input from the bottom one that was sufficient to synchronize the two

populations when they were both being driven (after 350 ms), this input was not strong

enough to cause significant firing before 350 ms. The low firing rate in the top column was

not significantly higher than the spontaneous rate due to noise.

Discussion

Synchronized oscill ations have been demonstrated in a wide variety of models of

interacting neurons ranging from models based on coupled intrinsic oscill ators (Winfree,

1967; Schuster & Wagner, 1990; Sompolinsky et al., 1990; Willi ams, 1992) to more

realistic models incorporating the characteristics of real neurons (Wilson & Cowan, 1972;

Wilson & Bower, 1991; Sporns et al., 1989; Bush & Douglas, 1991). The former allow

analysis while the latter allow detailed comparisons to be made to recordings from cortical

neurons. In particular, our realistic model was highly constrained by the morphology and

physiology of cortical neurons and the patterns of connectivity observed in primary



102

sensory cortices. Parameters that were not fully constrained were varied over a wide range

to find values that led to a match with physiological recordings. Our main results concern

the essential role of inhibitory neurons in synchronizing collective oscill ations within and

between sparsely connected columns of cortical neurons.

Synchronization in a single column

The mechanism of synchronization is similar to that described previously (Bush &

Douglas, 1991): Pyramidal cell burst discharges rapidly excite other pyramidal cells,

producing a large compound EPSP in all cells in the network, including the inhibitory

basket cells. The basket cells are driven to fire simultaneously, their feedback inhibition

onto the pyramidal cells then terminates the population burst and, together with intrinsic

potassium conductances, produces a post-burst hyperpolarization. Since the input

resistance of the pyramidal cells is greatly reduced during this hyperpolarization (Bush &

Sejnowski, 1994), there is less chance of the cell spiking during this time (out of phase

with the oscill ation). Cells with intrinsic bursting frequencies that vary over an octave (15

- 30 Hz) can be made to synchronize together at one frequency (eg. 45 Hz) by this

mechanism. Cells with lower intrinsic frequencies tend to ‘miss’ cycles of the oscill ation

rather than fire out of phase and they tend to fire single spikes instead of bursts.

This mechanism also produced synchronization in networks of regular firing

pyramidal cells that do not fire in bursts (not shown). The population EPSPs were smaller

and shorter in duration without bursting and of course the pyramidal cells fired less spikes;

thus, bursting improves but is not necessary for synchronization. A combination of

bursting and regular firing cells also produced synchronization (not shown).

The synchronized oscill ations demonstrated by the network shown in Fig. 3 display

a number of features in common with experimental recordings (Engel et al., 1990): The
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similarity of the form of single cell traces from simulation and experiment (Figs. 5 and 6)

suggests that the model has captured some of the most basic characteristics of the

biophysical mechanism of synchronous oscill atory firing in cortex. Intracellular recordings

from cat striate cortex demonstrate oscill ations that are stimulus dependent (absent during

spontaneous activity) and increase in amplitude during stimulation while the cell is

hyperpolarized (Jagadeesh et al., 1992; Bringuier et al., 1992). This suggests that the

oscill ations arose from rhythmic intracortical excitatory synaptic input. Of course other

mechanisms may produce the same type of behavior (Llinas et al., 1991); (McCormick et

al., 1993), and several mechanisms may be involved.

Another feature observed in the network simulations is the variabili ty of

synchronization. In the model, as in the experimental data (Gray et al., 1992), periods of

synchrony generally lasted a few hundred ms, with rapid spontaneous transitions into and

out of the synchronized state. In addition, the presence of synchrony varied from trial to

trial (using a different seed for the random number generator for noise and Poisson input).

Throughout each trial the external driving input was a stationary Poisson process; thus,

this variabili ty cannot be due to changes in the statistics of the input and the complex

internal dynamics of the network must be responsible for the rapid switching between

synchronous and asynchronous firing. However, in the 1000 neuron simulation the

variabili ty in the LAP was reduced (although individual cell traces still showed marked

variabili ty) (Fig. 4). Therefore, one possibili ty is that synchronized oscill ations in

neocortex are mediated by cell groups composed of about a hundred neurons. Synaptic

strengths would have to be very large in a 100 neuron network (scaling factor of 10,

giving EPSPs of 10 nS - see Methods). There is recent evidence that some single EPSPs

could be this large, producing quantal depolarizations of a few mV instead of a few

hundred µV (Thomson et al., 1993).
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With 1000 neurons we were able to use synaptic strengths without a scaling factor,

evidence that oscill ating neuronal groups are made up of on the order of 1000 neurons.

This would fit better with a consideration of the number of cells involved: Given

approximately 100,000 neurons/mm3 and a column 100-200 µ m in diameter there are on

the order of 1000 neurons in one layer of one column. If this is the case then the variabili ty

described above must be due to some source not included in the model. There are many

potential candidates, including low probabili ties of quantal release, use- and time-

dependent potentiation and/or depression of synaptic strengths, the action of

neuromodulators or some extrinsic cortical or subcortical signal. In a few 1000 neuron

simulations the probabili ty of an EPSP/IPSP given a presynaptic action potential was

reduced to 0.5 or lower (not shown): The amplitude and regularity of the LAP oscill ation

was significantly reduced. If this is not the case and instead 100 neurons is the minimal

size of an oscill ating group, then a single layer in a single column could contain many such

groups, which would seem unlikely in primary visual cortex, although association areas

such as entorhinal cortex may support such smaller groups.

Experimental recordings also show a frequency variabili ty of synchronized activity

within and between trials ranging from 40-60 Hz (Gray et al., 1992). The model of Bush

and Douglas (1991) displayed frequency variabili ty within a single trial, but this was an

artifact of having only one inhibitory neuron in their model: A single extra spike from this

neuron would significantly delay the onset of the next population burst. We could obtain

different frequencies of oscill ation in our more realistic simulations only by changing the

strength of the external driving input. In this way the frequency could be changed in the

range 35-60 Hz. The external input was kept constant within a trial and a change in

oscill ation frequency was never observed. Therefore, we suggest that the frequency

variabili ty observed in experimental recordings is due to a concomitant variabili ty in the

strength of the external input. External here means external to the synchronized group,
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coming from the thalamus or other areas of cortex. For a pyramidal cell in one of our

simulations, approximately half of its excitatory input was external stationary Poisson

spike trains and half was excitatory feedback from other pyramidal cells in the network,

the sole source of synchronized inputs.

There was no external input onto the basket cells in our model. If we included such

input network synchrony was degraded. Thus, although external inputs to a cortical

column do contact inhibitory cells as well as pyramidal cells (Douglas & Martin, 1990),

our results suggest that the vast majority of input to the inhibitory interneurons in a

synchronized oscill ating cell group comes from excitatory (pyramidal) cells in that same

group. Alternatively strong external inputs to inhibitory cells may be correlated, either

from the thalamus or other cortical regions, as long as they are synchronized with that

column.

Synchronization between columns

Zero-phase lag synchrony between two populations was established within one or

two cycles of the intercolumnar connections being activated (Figs. 8 and 13). Often the

oscill ation in one column would continue unperturbed while a cycle in the other would be

suppressed or a new one prematurely initiated to get the two columns in phase.

Connections from the pyramidal cells in a column to both the pyramidal cells and the

basket cells in the other column were required. The greater effectiveness of inhibitory

input in producing synchronization (Lytton & Sejnowski, 1991) may explain the need for

pyramidal-basket intercolumnar connections. Reciprocal connections were not strictly

necessary: Two columns could be synchronized with uni-directional connections from one

to the other (not shown), although the synchrony obtained with this connectivity was not

as strong as with reciprocal connections between the columns.
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One parameter that did have a large effect on synchrony between columns was the

delay time (Fig. 11). Our model predicts that two cortical areas cannot be synchronized by

direct connections if the delay in those connections is significantly greater than 5 ms (~1/4

period), in agreement with previous models based on coupled oscill ators (Schuster &

Wagner, 1989; Sompolinsky et al., 1990). Interestingly, in the cat this does not appear to

exclude any areas of cortex directly connected to each other, even if they are in opposite

hemispheres. Time delays between cells in the same column, separated by 10s of µ m, are

1-2 ms due to conduction along thin, unmyelinated axons (Mason et al., 1991; Thomson et

al., 1988). Time delays between cells in opposite hemispheres, separated by several cm,

have been recorded at or below 5 ms due to conduction along thick, myelinated axons

(McCourt et al., 1990). It would appear that the axons are organized to put cortical cells

functionally next to each other. Thus, cells coupled by synchronization throughout the

extent of the visual system can work on the same task simultaneously.

However, the same is not true for the cortex of the rabbit, where callosal

conduction times are 10s of ms (Swadlow, 1991), too long for synchronization to work by

direct connections. Thus, for this animal either there is some other mechanism of

synchronization, or it does without synchronized 40 Hz activity of its two hemispheres.

The results shown in Figs. 12 and 13 are consistent with the hypothesis that the

horizontal connections in neocortex serve a modulatory role; in this case they serve to

synchronize cortical columns. The strong effect of surround stimulation on a neuron that is

also receiving direct stimulation of its receptive field (Gilbert & Wiesel, 1990) is also

consistent with a modulatory role for the long-range horizontal connections. It should be

noted that recent work has suggested that these connections can be strengthened under

some conditions (perhaps by sprouting of extra axon collaterals) to the point where they

can indeed drive cells in the absence of other input (Pettet & Gilbert, 1992; Darian-Smith

& Gilbert, 1994).
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Conclusion

Synchronization in model cortical networks is a robust phenomenon resistant to

variation in parameters that are known to show a wide degree of variation in cortex. As

long as time delays are short enough, which in the cat seems to hold even across

hemispheres, cells in any number of directly connected cortical regions could fire in

synchrony with each other regardless of where they are located physically. Our model is

incomplete in some respects, but the central role of inhibition in promoting synchronous

activity is likely to be robust; indeed, inhibition has been shown to be crucial for

synchronization in other related models (van Vreeswijk et al., 1994; Kopell & LeMasson,

1994).
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FIG. 1. Intrinsic firing properties of isolated model neurons. A) Bursting response of a
pyramidal cell when injected with constant 0.2 nA depolarizing current at the soma. B)
Higher frequency response to a 1 nA current. The stronger input also produces more
spikes per burst. C) Postsynaptic response of a second pyramidal cell connected with a 0.5
nS synapse to the cell shown in (A). Top trace is the dendritic potential, bottom trace is
the somatic potential. D) Spike train from a basket cell injected with 0.05 nA depolarizing
current and +/- 0.3 nA noise (see Methods).
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FIG. 2. Activity in models of 100 isolated layer 5 cortical neurons. The top 2 traces show
the somatic membrane potential of 2 basket cells from a population of 20 making up one
column. Since the driving input to the network goes only to the pyramidal cells the basket
cells do not fire many spikes. The next trace is an analog of the local field potential, called
the local averaged potential (LAP), to show the global synchronization of the whole
column (see Methods). The flat trace shown here indicates that the neurons were not firing
synchronously. The bottom 7 traces show the somatic membrane potential of 7 sample
pyramidal cells from the total population of 80. In this example the intrinsic bursting
frequency of the cells increases towards the bottom.
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FIG. 3. Intracolumnar synchronization in a model network of neurons connected with a
probabili ty of 10%. The oscill ations in the LAP shown here indicate that the neurons in the
column fired synchronously. This is confirmed by the firing of the basket cells, which have
no intrinsic bursting dynamics and only fire bursts in response to synchronized input from
the pyramidal cells. There is considerable 'jitter' in an individual pyramidal cell 's output; the
network oscill ation is a statistical property of the population and not at all ‘clock-like’ .
The synchrony spontaneously disappears and reappears at 100 and 350 ms. This rapid shift
has been seen in real experimental data.
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FIG. 4. Synchronization of a 1000 neuron network connected at a density of 5%. The
oscill ation in this network, apparent in the LAP and rhythmic bursting of the basket cells,
is much more regular than that of the 100 neuron network shown in Fig. 3, although there
is still significant ‘jitter’ in the individual pyramidal spike trains.
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FIG. 5. Higher resolution plot of the membrane potential of the 4th pyramidal cell from
Fig.4. There are a series of rhythmic compound EPSPs, some of which have spikes arising
from them. Spikes do not occur at other times (in the ‘ troughs’) because the membrane
resistance is substantially reduced by a combination of inhibitory feedback and intrinsic
potassium currents.
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FIG. 6. The response of a simple cell recorded intracellularly in area 17 of the cat to a
square wave grating (1 c/deg) presented to the left eye at the optimal orientation and
velocity. The data in the lower trace at higher time resolution was taken from the epoch in
the upper trace that is marked by a horizontal line. The cell was tightly tuned for
orientation and showed a monocular preference for the left eye. Vm = -80 mV, Rin = 57

MΩ. This trace shows a similar series of compound EPSPs sometimes topped by spikes as
the trace in Fig. 5. It is not known whether this neuron was an intrinsically bursting cell as
assumed in the model. Cell recorded by CM Gray and DA McCormick.
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FIG. 7. Effect of increasing the strength of reciprocal inhibition between the basket cells in
a 100 neuron network. Inhibition increases from top to bottom. Each trace shows the
population LAP and a sample basket cell trace. A) No inhibition between basket cells.
Synchronization can still occur, but is not optimal because the discharges of the basket
cells on each cycle perseverate, sometimes running into the next cycle. B) Basket cells
connected by 1 nS synapses. These traces are taken from Fig. 3. This is the optimal
amount of mutual inhibition between basket cells in our model column. C) Basket cells
connected by 2 nS synapses. Synchronization is degraded because the basket cells inhibit
each other too strongly before they can fire a coherent burst and effectively terminate the
burst of firing in the pyramidal cell population.
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FIG. 8. Zero phase lag synchrony between two columns of 100 neurons connected with
pyramidal to pyramidal and basket cell synapses at a probabili ty of 4%. For each column a
basket cell trace, 3 pyramidal cell traces and the LAP of all the pyramidal cells in that
column are shown. Synchrony is rapidly established when the inter-columnar connections
turn on at 100 ms and remains for the duration of the simulation. When the columns
temporarily desynchronize and then resynchronize (eg. at 375 ms), they do so together.
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FIG. 9. Cross-correlations of the LAPs of two-column simulations. A) Results from
network shown in Fig. 8. There is a large central peak centered on -2.6 ms which indicates
that the two columns were oscill ating in phase. B) Cross-correlation from two
unconnected columns. The largest peak is at some random non-zero position indicating
that these two columns were not oscillating in phase with each other.
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FIG. 10. Phase difference between LAPs from two-column simulations. A) Difference
between the phase spectra of the LAPs over the same frequency range as in (B). The
phase difference decreases to zero at 44 Hz, the oscill ation frequency of the network,
indicating zero-lag synchronization of the two columns. B) Averaged power spectra of the
two LAPs of Fig. 8 (simulation continued for 6.5 secs). There is a large peak at 44 Hz.  C)
Phase difference between two LAPs from two unconnected columns. There is no decrease
in the phase difference around the oscill ation frequency of the two columns confirming
that they are not synchronized together. D) Averaged power spectra of the two LAPs.
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FIG. 11. Synchrony between columns is severely degraded by increasing the inter-
columnar time delay. These two columns were connected by synapses that had a mean
delay of 7.2 ms and turned on at 100 ms. Not only was the synchrony between the
columns degraded by long time delays, but the internal synchrony within each column was
also disrupted.
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FIG. 12. Response of a sample basket cell and two representative pyramidal cells to
stimulation of inter-columnar connections. Increasing from left to right, 10, 50 or 80
pyramidal cells in one column were stimulated with 0.5 nA current for 8 ms. Postsynaptic
responses were recorded in the other column. Synaptic scaling factor of intercolumnar
connections was reduced from 10 to 3 to allow the simulation of stimulating a small
number of fibers. Weak stimuli produce an EPSP in one the pyramidal cells and a single
spike in the basket cell. Stronger stimuli produce more spikes in the basket cells which
cause IPSPs in the pyramidal cells, shutting off the excitatory response.
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FIG. 13. Inter-columnar connections have little effect on an undriven column. The two
columns shown here are connected as in Fig. 8, with the inter-columnar connections
turned on at zero ms. The upper column receives no external driving input until 350 ms
(arrow). After this time the two columns are synchronized by the inter-columnar
connections, but before this they have very little effect on the undriven column, producing
a few subthreshold depolarizations but few spikes. The basket cells have a lower threshold
and fire a few spikes, which helps to suppress the pyramidal cells (see Fig. 12).


