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Comparison of current-driven and conductance-driven neocortical model neurons
with Hodgkin-Huxley voltage-gated channels
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Intrinsic noise and random synaptic inputs generate a fluctuating current across neuron membranes. We
determine the statistics of the output spike train of a biophysical model neuron as a function of the mean and
variance of the fluctuating current, when the current is white noise, or when it derives from Poisson trains of
excitatory and inhibitory postsynaptic conductances. In the first case, the firing rate increases with increasing
variance of the current, whereas in the latter case it decreases. In contrast, the firing rate is independent of
variance~for constant mean! in the commonly used random walk, and perfect integrate-and-fire models for
spike generation. The model neuron can be in the current-dominated state, representative of neurons in thein
vitro slice preparation, or in the fluctuation-dominated state, representative ofin vivo neurons. We discuss the
functional relevance of these states to cortical information processing.

PACS number~s!: 87.19.La, 87.17.Nn, 87.17.Aa
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I. INTRODUCTION

The random-walk ~RW! @1,2#, and integrate-and-fire
~IAF! models@3# were introduced to account for the stocha
tic discharge of neurons that was measured experiment
Recently, the highly variable discharge of cortical neuronsin
vivo has led to renewed interest in these models@4–8#. In
vivo neocortical neurons undergo a constant bombardm
by excitatory and inhibitory postsynaptic potentials~EPSPs
and IPSPs!. Under these conditions, the IAF model neur
produces a regular spike train~low coefficient of variation,
CV!1, see below!, whereas in the cortex the neurons ac
ally fire with aCV'1 @4#. A number of modifications of the
standard IAF have been proposed to make it spike at a hi
CV , such as balanced excitatory and inhibitory synaptic
puts @5,8#, physiological gain@9#, and partial reset after a
emitted spike@10#. The issue of highCV values has, how-
ever, only partially been addressed using more realistic
physical model neurons@8,11,12#. How do theCV values of
the neuronal discharge of a biophysical neuron depend on
statistical characteristics of its fluctuating input current? H
is the neuron’sin vivo dynamics different from that in thein
vitro preparation?

Here we address these two issues theoretically. We
tematically study a biophysical model neuron with Hodgk
Huxley voltage-gated channels. The model neuron produ
short duration action potentials with a fast afte
hyperpolarization, and it can fire at high sustained firi
rates, consistent with the properties of regular and fast s
ing cortical neurons@13#. We apply to the model neuron tw
fluctuating current drives: a white-noise current with meaI
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and varianceD, and a Poisson train of excitatory and inhib
tory postsynaptic conductances, characterized by meah
and varianceh2 of the resulting synaptic currents. The ma
result is that the source of the fluctuating currents matt
The firing rate is differently affected by the variance,D, of a
white-noise current drive compared to the varianceh2 of a
conductance drive. The commonly used RW model does
account for this effect of the variance on the firing rate. Als
the model neuron can be in the fluctuation- or curre
dominated state depending on the value of the variance.
potential information encoding capacity of the neuron
qualitatively different in these states.

II. METHODS

A. Model equations

The neuron is modeled as a single compartment w
Hodgkin-Huxley-type voltage-gated sodium and potassi
currents, with the rate functions and values for the maxim
conductances as given in Ref.@14#. Briefly, the equation for
the membrane potentialV of a neuron is

Cm

dV

dt
52I Na2I K2I L2I syn1I app1Cmj. ~1!

Here I Na, I K , I L , I syn, I app, andCmj are the sodium, po-
tassium, leak, synaptic, externally applied, and noise c
rents, respectively. A detailed description of the model c
be found in Ref.@15#. The currents are measured inmA/cm2

units andCm51 mF/cm2 is the membrane capacitance. Th
resulting equations are integrated using an adapted sec
order Runge-Kutta method designed for stochastic differ
tial equations@16#, with a step sizedt50.01 ms. The accu-
racy of the zero noise results was checked against res
obtained with a smaller step size and using a fourth-or
Runge-Kutta algorithm@17#.
8
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There were two types of noise models. The first wa
white-noise current, i.e.,̂j(t)j(t8)&52Dd(t2t8) (D is ex-
pressed in mV2/ms) as in@18#, and the synaptic currentI syn
in Eq. ~1! was set to zero. The second was a sum of inh
tory and excitatory conductances,

I syn5gese~ t !~V2Ee!1gisi~ t !~V2Ei !, ~2!

where the maximum conductance isge5gi52.0 mS/cm2,
and the reversal potentials areEe50 mV andEi5275 mV,
for the excitatory and inhibitory synapses, respectively. U
tary EPSPs~IPSPs! are modeled as quantal conductance
creases,Dse50.001 (Dsi50.005), in the synaptic kinetic
variablese(t) @si(t)#. The conductance pulses inse(t) and
si(t) decay exponentially in time with a time constantte
52 ms (t i510 ms!. The postsynaptic potentials are ind
pendent and Poisson-distributed with average firing ratef e
and f i , respectively. For the simulations of the conductan
driven neuron,I 50.10 mA/cm2, yielding a resting mem-
brane potentialVrest5262.305 mV.

B. Mean and variance of the current for a conductance drive

The goal is to characterize the effects of the average s
aptic drive and its variance. This is not as straightforward
in the white-noise case. The EPSPs and IPSPs open syn
channels, and thus result in an increased conductanc
changed average driving current, and a new resting m
brane potential. The statistical properties of the driving fo
I syn are the mean,

h[^I syn&5be^se&1b i^si&, ~3!

with be5ge(Ee2Vrest) and^se&5tef eDse ~with similar ex-
pressions for the inhibitory part in this formula, and the on
that follow!; and the variance,

h2[^I syn
2 &2h25De1D i , ~4!

with De5 1
2 be

2^se&Dse andD i5
1
2 b i

2^si&Dsi .
To keeph constant, with the membrane potential clamp

at Vrest, it is necessary to covaryD f e andD f i according to

D f e52
b iDsit i

beDsete
D f i , ~5!

whereas to keeph2 constant,

D f e52
b i

2Dsi
2t i

be
2Dse

2te

D f i . ~6!

Here we usef e5 f e
01D f e and f i5 f i

01D f i , with initial pr-
esynaptic firing ratesf e

0 and f i
0 . Because of the effects of th

synaptic conductances on the resting potential, and the
sible generation of action potentials, the mean of the ac
synaptic currents is not constant for constanth. ~This would
only be the case when the synaptic conductances are s
compared to the leak conductance.! The quantitiesh andh2,
however, do have a clear experimental correlate. They
the mean and variance of the current that needs to be inje
into a neuron to keep its voltage constant~voltage clamp!
while receiving a specific synaptic drive. Here we investig
a
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how this synaptic drive affects the dynamics of a curre
clamped neuron as a function ofh andh2.

C. Calculated quantities

The raw data obtained from the simulations are the v
ageV(t) traces at discrete timest5n dt. The i th spike time
is defined as the timet i ~expressed in ms! when the voltage
crosses 0 mV from below. Thei th interspike interval~ISI! is
given byt i5t i 112t i . We calculate its mean,t ISI , and stan-
dard deviations ISI . The coefficient of variation (CV) is de-
fined as the ratioCV5s ISI /t ISI . The firing rate in Hz is
given by f 51000/t ISI . We also determined the interspik
interval histogram~ISIH! in 500 bins of width Dt5(50
2400)dt. We calculated the entropySof the ISIH@19# when
at least 99% of the intervals generated in the simulations
accounted for in the ISIH:

S52(
i

pi log2 pi1 log2 Dt. ~7!

Herepi is the numerical estimate for the probability of an I
falling in bin i. The information rateR is S/t ISI .

We performed least-squares fits of the ISIH to a gam
probability distribution function,P(t), with fitting param-
etersm, r, andtd :

P~ t !5
~mr !r~ t2td!r 21e2mr (t2td)

G~r !
~ t.td!, ~8!

andP is equal to zero fort<td . The fitting parameters can
be related to the moments of the distribution:t ISI5(1/m)
1td , s ISI51/mAr , andCV51/@Ar (11mtd)#.

We used both the Powell and Marquardt-Levenberg r
tines from Ref.@17# to minimize the square of the deviatio
between the fitting function and the data. A fit was acce
able when the average and variance of the ISIH and
fitting function differed less than 2%, the value ofx2 ~for
optimal bin width, see@17#! was less than 2 and the param
eters obtained by the different optimization routines differ
by less than 10%.

III. RESULTS

A. White-noise-driven neuron

First consider the behavior of a white-noise-driven neu
as a function of the driving currentI ~Fig. 1!. The rheobase is
defined as the currentI rheo at which the neuron starts firing
repetitively, hereI rheo'0.16. ForD50, the firing rate versus
current (f -I ) characteristic resembles a square-root funct
above the rheobase@20#, and below the rheobase the firin
rate is zero. There is low-frequency noise-induced spik
below the rheobase forD50.004. In that case, theCV starts
out at values close to 1 for currents near the rheobase,
quickly decreases with increasing current. For stronger no
D>2, the f -I is approximately linear over its entire rang
@21#, and theCV does not vary strongly with current.

We studied the output statistics as a function ofD for two
current values,I 50.16, close to, but still below, the rheo
base, andI 50.6, above the rheobase~Fig. 2!. The variance
s ISI increases with increasingD for I 50.6, butdecreasesfor
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PRE 62 8415COMPARISON OF CURRENT-DRIVEN AND . . .
I 50.16. At the same time, the firing rate increases appro
mately asAD for I 50.16, whereas it spikes repetitively at a
approximately constant firing rate fromD50 to D'1 for
I 50.6. The model neuron can thus be in two dynami
states depending on its input: ForI 50.16, it is in the
fluctuation-dominated state, and forI 50.60 (D!1), in the

FIG. 1. White-noise-driven neuron.~a! The firing ratef, and~b!
the coefficient of variationCV as a function of injected currentI.
From top to bottom, the noise strength isD58, 2, 0.2, 0.04, and
0.004. Averages are calculated over 203103 ms after discarding a
transient of 500 ms. The solid lines forD58, 2, and 0.2 are running
averages over four points. The original data points are plotted
small circles.

FIG. 2. White-noise-driven neuron.~a! The firing ratef, ~b! the
standard deviations ISI , ~c! the entropyS per interval, and~d! the
entropy rateR versus noise varianceD. We usedI 50.16 ~filled
circles! and I 50.60 ~filled triangles!. Averages are calculated ove
2003103 ms after discarding a transient of 53103 ms.
i-

l

current-dominated state. These results are consistent with
theory presented in Ref.@20# for the excitable~fluctuation-
dominated! and oscillatory~current-dominated! regime of
their type-I neuron. We also determine the Shannon entr
@Eq. ~7!# of the distribution of ISIs@Fig. 2~c!#. It represents
the maximum amount of information thatin principle can be
coded in one interval@22,19#. For I 50.16 it decreases with
D, whereas forI 50.6, it initially increases, and then con
verges to theI 50.16 result. The information capacity pe
interval for I 50.16 is higher compared to the capacity f
I 50.6. However, the converse holds for the information r
R, since the firing rate forI 50.6 is higher.

In Fig. 3, five ISIHs with the corresponding voltage tim
traces are shown withD increasing from top to bottom. We
fitted the ISIH to a gamma probability density function~pdf!,
given in Eq.~8!. For D50.024, the spike train is regular, th
ISIH is sharp, and it is fitted by a gamma pdf of orderr
.30. In fact, a Gaussian distribution is also a good fit~not
shown!. For higherD values, the spike train is more variab
and the ISIH is broader. The ISIH is also more asymmet
the left-hand side of the ISIH is less stretched compared
its tail on the right-hand side. Ther value of the fitting func-
tion decreases to approximately 3. ForD536, the neuron is
in the fluctuation-dominated regime. Ther value is close to
1, corresponding to a Poisson spike train, and the ISIH
sembles an exponential distribution. However, the fit sho
in Fig. 3~i! did not satisfy the criteria for a good fit~see Sec.
II !. The voltage trace forD536 resembles those measured
in vivo experiments@23,24#.

The entropy of the Gaussian, gamma, and exponential
tributions are, respectively@19#,

SGauss5 log2 s ISI1
1
2 log2 2pe, ~9!

Sgamma5 log2 s ISI1 log2 G~r !1@~12r !c~r !1r #/ ln 2,
~10!

Sexp5 log2 s ISI11/ln 2. ~11!

Here G is the gamma function andc is its logarithmic de-
rivative @25#. The entropy depends ons ISI as log2 sISI with
an additive constant that depends on the shape of the d
bution. The Gaussian distribution has the highest entropy
a given variance: the additive constant is log2 2pe'2.05,
compared to 1/ln 2'1.44 for the exponential distribution
The additive constant for the gamma pdf takes a value
tween the Gaussian and exponential result: forr 51, Sgamma
5Sexp, and for larger, Sgamma→SGauss. Therefore, there is
an optimum in the entropy per interval in Fig. 2~c!, since
there is a maximum ins ISI itself @Fig. 2~b!# and ther value
of the distribution decreases fromr .30 to r 51.

B. Conductance-driven neuron

For the conductance-driven neuron, we useh and h2 as
parameters, but in the simulations we actually vary the
esynaptic firing ratesf i and f e . Since the firing rates are
always positive, it is not possible to have a finiteh while at
the same timeh250. The current-dominated regime foun
in the white-noise-driven neuron for low variance and mo
erate mean is small in the conductance-driven neuron for
parameter values used here.

as
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FIG. 3. White-noise-driven neuron. Left-han
side: ISIH~solid line!, and the gamma probability
density function fitted to it~dashed line! as a
function of the interspike intervalt; right-hand
side: corresponding voltage time traces. From t
to bottom,D50.024~a,b!, 0.08~c,d!, 0.8 ~e,f!, 4
~g,h!, and 36~i,j! with I 50.6. The fitting param-
eters are (m,r ,td ,x2)5(0.096,30.0,15.6,1.3),
(0.071,17.1,11.9,1.2), (0.061,3.2,9.0,1.2
(0.059,1.6,5.9,3.0), and (0.10,1.0,3.2,4.2),
spectively. See text for details. Averages are c
culated over 2003103 ms after discarding a tran
sient of 500 ms.
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We first keeph2 constant, and varyh. The results are
similar to those in Fig. 1. The firing rate increases wh
increasingh, but the CV and the entropy per interval de
crease@Fig. 4~I!#. Note that thef -h characteristic is sublin-
ear for smallh @Fig. 4~Ia!#.

The behavior for constanth and varyingh2 is shown in
Fig. 4~II !. The firing rate nowdecreaseswith increasing vari-
ance. This counterintuitive effect occurs because in orde
increase the variance, more synaptic channels need t
opened. As a result, the total conductance increases~i.e., the
input resistance is reduced!, making it harder for the curren
to drive the neuron to a spiking threshold. Hence the fir
rate decreases. TheCV increases with the varianceh2, as for
n

to
be

g

the white-noise-driven neuron.
In Fig. 5 we show the ISIHs and the gamma-pdf lea

squares fit. Ther value of the fitting function decreases fro
approximately 3 to 1 with decreasingh. The first three fits
have relatively highx2 values, due to significant deviation
of the ISIH from a gamma pdf for large ISI values. Howeve
the deviations for ISI values near the mode of the distrib
tion are small and the fit appears reasonable.

C. Comparison of CV-t ISI curves

In Fig. 6, we compare~a! the RW and IAF models,~b! the
white-noise-driven, and~c! the conductance-driven neuron
We plot theCV versust ISI curves for constant mean of th
FIG. 4. Conductance-driven neuron.~a! The
firing rate f, ~b! the coefficient of variationCV ,
~c! the entropySper interval, versus~I! the mean
drive h and ~II ! the variance of the driveh2.
Here ~I! h250.0251 ~circles!, 0.137 ~squares!,
and 0.216 ~diamonds!; and ~II ! h50.0997
~circles!, 0.174~squares!, and 0.263~diamonds!.
Averages are calculated over at least 2003103

ms after discarding a transient of at least 53103

ms.



t-
-

op

nd
for

e.
e

PRE 62 8417COMPARISON OF CURRENT-DRIVEN AND . . .
FIG. 5. Conductance-driven neuron. Lef
hand side: ISIH~solid line!, and the gamma prob
ability density function fitted to it~dashed line! as
a function of the interspike intervalt; right-hand
side: corresponding voltage time traces. From t
to bottom: h50.254 ~a,b!, 0.151 ~c,d!, 0.069
~e,f!, 0.023~g,h! with h250.0251. The fitting pa-
rameters are (m,r ,td ,x2)5(0.048,3.3,27.2,28),
(0.021,1.7,36.4,5.9), (0.0051,1.3,43.9,2.44), a
(0.0015,1.1,52.0,1.1), respectively. See text
details. Averages are calculated over 50003103

ms after discarding a transient of 53103 ms. The
action potentials appear to vary in amplitud
This is due to the undersampling of the voltag
trace at 0.5 ms for display purposes.
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current drive~solid lines!, d, I, andh, respectively, and for
constant variance~dashed lines!, D, D, andh2, respectively.

The mean and variance of the interspike intervals can
calculated analytically for the RW and perfect IAF mod
For the RW model, we have@26#.

t ISI5
u

d
,

s ISI5
uD

d3
, ~12!

CV5AD

ud
5ADt ISI

u2
.

Hered is the mean andD the variance of the drive, andu is
the spiking threshold. In the perfect IAF model, the me
brane potential does not decay in time, and the postsyna
potentials are modeled asd pulses with strengthai andae ,
for inhibitory and excitatory pulses, respectively. In th
case, Eqs.~12! also hold @26#, with d5aef e2ai f i and D
5ae

2f e1ai
2f i and presynaptic firing ratesf i and f e . In Fig.

6~a!, we plot the constantD and d lines according to Eqs
~12!. The solid curves in Fig. 6~a! are parallel to theCV axis.
The firing rate is constant; only theCV increases withD. The
dashed curves are convex,CV;t ISI

1/2.
In Fig. 6~b! there are two types of solid lines. Solid line

that start atCV50 with a finite value oft ISI ~current-
dominated regime!. On these lines the firing rate is consta
while theCV increases. However, for higherCV values these
lines curve towards the left of the graph: theCV and the
firing rate increase at the same time. The other solid line~we
show only one example, denoted by an asterisk *) starts
at large t ISI values with a finiteCV value ~fluctuation-
dominated regime!. The dashed lines all curve upwards; t
CV increases with increasingt ISI . Thus the same noise var
anceD leads to comparatively more jitter for lower firin
rates.

For the conductance-driven neuron@Fig. 6~c!#, the solid
lines curve toward the right: theCV andt ISI increase at the
e
.

-
tic

t

t

ut

same time, because the firing rate decreases with varia
@see also Fig. 4~a!#. The dashed curves are concave co
pared to convex in Figs. 6~a! and 6~b!.

In summary, the most important difference between
four different neuron/driving force models is their behavi

FIG. 6. TheCV versust ISI curves for~a! RW and perfect IAF
model, ~b! white-noise-driven neuron, and~c! conductance-driven
neuron. On the solid lines the mean current is kept const
whereas on the dashed lines the variance is kept constant.
curves in ~b! and ~c! are obtained from numerical simulation
whereas those in~a! are the analytical results from Eq.~12!. The
parameter values in~b! are, for solid lines from right to left,I
50.16, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9; and for the das
lines from bottom to top,D50.004, 0.04, 0.20, 2.0, and 8.0. In~c!
we have from right to left~solid lines!, h50.10, 0.17, and 0.2629
and from bottom to top~dashed lines!, h250.015, 0.025, and
0.041. Averages are calculated over at least 2003103 ms after dis-
carding a transient of at least 500 ms.
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as a function of the variance of the fluctuating current. F
the white-noise-driven neuron, the firing rate increases w
the variance, whereas in the conductance-driven neuro
decreases, and for the RW and perfect IAF models it rem
the same.

IV. DISCUSSION

The model neuron can be in two different dynamic
states that have clear physiological correlates. Neurons in
in vitro slice preparation are characterized by a low intrin
noise level@27#, and they receive little synaptic drive. Th
suggests that their dynamics is current-dominated. In c
trast, in vivo neurons are constantly being bombarded
EPSPs and IPSPs, and fire at highCV values @8#. Indeed,
recent experiments show that the input resistance of cor
neuronsin vivo can be up to five times lower than their inp
resistance in the absence of synaptic inputs@23,24#. The vari-
ance of the voltage fluctuations is also higher with synap
inputs present@23,24#. This resembles the fluctuation
dominated conductance-driven state reported in this pape
what follows, we discuss the functionally relevant diffe
ences between these two states and suggest future ex
ments.

The f -I in the current-dominated state is highly nonline
Close to the rheobase, a small increase in input current
lead to a large increase in firing rate. Thef -I in the
fluctuation-dominated state is linear for white-noise-driv
neurons, and it can be sublinear for conductance-driven n
rons. The dynamical range is much larger in fluctuatio
dominated, conductance-driven neurons. As a result, cor
neurons are able to maintain their firing rate within a fix
range despite their constant synaptic bombardment an
wide range of input frequencies@8#.

In the current-dominated state, the ISI are distributed
cording to a Gaussian, or gamma~with r @1) @Eq. ~8!#, prob-
ability distribution. The information capacity of a Gaussi
distribution is maximal at a given value for the varian
s ISI . Therefore, the potential information content is maxim
in the interspike intervals or, equivalently, in the instan
neous firing rate, 1/t i ~see Sec. II!. In the fluctuation-
dominated state, the ISI are distributed according to
gamma distribution withr values close to 1. A Poisson spik
train (r 51) has the highest information rate per spike tim
at a given firing rate@28,19#. In the fluctuation-dominated
state, therefore, the potential information content of the sp
times is maximal. This suggests that the nature of inform
tion processing might be different in the fluctuation vers
current-dominated states. It also lends support to the
that the neuron can act as a rate coder or a spike-time c
depending on the input types.

Simple models, such as the perfect IAF and RW, w
used in previous studies of neuronal variability@1,3,8#. These
models can produce spike trains with almost any value
the firing rate andCV for more or less realistic paramete
r
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values @9,10#. This approach is useful when considering
neuron in isolation. However, in a network of neurons it
also important to correctly model how a neuron responds
dynamical changes in the mean and variance of the fluct
ing drive. Here we have shown that these models do
account for the variance effects of fluctuating currents t
were observed in more realistic biophysical models. It is i
portant to include the contributions of synaptic noise exp
itly as synaptic conductances. Salinas and Sejnowski@29#
have shown that the leaky IAF model can account for
variability observed in experiment@8# if synaptic conduc-
tances are included. An important issue is whether and
what extent that would change results obtained previousl
networks of integrate-and-fire neurons without synaptic c
ductances, such as, for example, Refs.@8,30,31#. This re-
mains for future study.

We have also studied the statistics of the output sp
train of a biophysical model neuron as a function of the me
and variance of the stochastic driving current. As mention
before, the input parameters have a clear experimental
log: they are the mean and variance of the injected curre
in voltage-clamp mode that are necessary to keep the ne
at a constant membrane potential. However, during curr
clamp mode the voltage is able to change according the n
ronal dynamics, allowing the statistics of the output sp
train to be determined. Usingin vivo measurements of the
mean and variance of the fluctuating current, and the dis
bution of EPSP and IPSP characteristics, one can estim
the presynaptic spiking ratesf i and f e using Eqs.~3! and~4!.
The output statistics can subsequently be measured in
current-clamp mode. Duringin vivo experiments, however
one has relatively little control over the statistics of the sy
aptic inputs, but duringin vitro experiments one can inject
current with arbitrary statistical properties. One of the k
results in this paper is that the source of the variance mat
a current drive is different from a conductance drive. O
therefore has to inject conductances into the neuron using
recently developed dynamic-clamp technique@32#. The CV
versust ISI diagrams can then be reconstructed by system
cally varying f i and f e . Can thein vivo dynamics of neurons
be reproduced in thein vitro preparation by injecting synap
tic conductances? Does the firing rate of neurons decre
when the variance of the fluctuating current is increas
Experiments are presently in progress to address these q
tions @33#.
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