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PURPOSE. To determine which machine learning classifier
learns best to interpret standard automated perimetry (SAP)
and to compare the best of the machine classifiers with the
global indices of STATPAC 2 and with experts in glaucoma.

METHODS. Multilayer perceptrons (MLP), support vector ma-
chines (SVM), mixture of Gaussian (MoG), and mixture of
generalized Gaussian (MGG) classifiers were trained and tested
by cross validation on the numerical plot of absolute sensitivity
plus age of 189 normal eyes and 156 glaucomatous eyes,
designated as such by the appearance of the optic nerve. The
authors compared performance of these classifiers with the
global indices of STATPAC, using the area under the ROC
curve. Two human experts were judged against the machine
classifiers and the global indices by plotting their sensitivity–
specificity pairs.

RESULTS. MoG had the greatest area under the ROC curve of the
machine classifiers. Pattern SD (PSD) and corrected PSD
(CPSD) had the largest areas under the curve of the global
indices. MoG had significantly greater ROC area than PSD and
CPSD. Human experts were not better at classifying visual
fields than the machine classifiers or the global indices.

CONCLUSIONS. MoG, using the entire visual field and age for
input, interpreted SAP better than the global indices of STAT-
PAC. Machine classifiers may augment the global indices of
STATPAC. (Invest Ophthalmol Vis Sci. 2002;43:162–169)

Classification permeates medical care. Much of the manage-
ment of glaucoma depends on the diagnosis of glaucoma

or the risk of its progression. The specific aims of this study
were (1) to determine which machine learning classifiers best
interpret standard automated perimetry and (2) to compare the
performance of the best classifiers with the global indices in
STATPAC 2 and with experts in glaucoma.

Appropriate glaucoma evaluation requires examination of
the optic disc and visual field testing. Automated threshold
perimetry has grown in popularity largely because it provides
calibrated, detailed quantitative data that can be compared
over time and among different centers. Interpretation of the
visual field remains problematic to most clinicians.1

It is difficult to separate true visual field loss from fluctua-
tions in visual field results that may arise from learning effects,
fatigue, and the long-term fluctuation inherent in the test.2,3

This fluctuation makes the identification of glaucoma and the
detection of its progression difficult to establish.

We investigated classification techniques to improve the
identification of glaucoma using SAP. Neural networks have
been previously applied in ophthalmology to interpret and
classify visual fields,4–6 detect visual field progression,7 assess
structural data from the optic nerve head,8 and identify noise
from visual field information.9 Neural networks have improved
the ability of clinicians to predict the outcome of patients in
intensive care, diagnose myocardial infarctions, and estimate
the prognosis of surgery for colorectal cancer.10–12 We applied
a broad range of popular or novel machine classifiers that
represent different methods of learning and reasoning.

METHODS

Subjects

Population Source and Criteria. Visual field data came from
our longitudinal study of visual function in glaucoma. Normal subjects
were recruited from the community, staff, and spouses or friends of
subjects. Primary open-angle glaucoma patients were recruited from
the Glaucoma Center, University of California at San Diego. Informed
consent was obtained from all participants, and the study was ap-
proved by the Institutional Review Board of the University of California
at San Diego. This research follows the tenets of the Declaration of
Helsinki.

Exclusion criteria for both groups included unreliable visual fields
(defined as fixation loss, false-negative and false-positive errors $

33%),13 angle abnormalities on gonioscopy, any diseases other than
glaucoma that could affect the visual fields, and medications known to
affect visual field sensitivity. Subjects with a best-corrected visual
acuity worse than 20/40, spherical equivalent outside 65.0 diopters,
and cylinder correction .3.0 diopters were excluded. Poor quality
stereoscopic photographs of the optic nerve head served as an exclu-
sion for the glaucoma population. A family history of glaucoma was not
an exclusion criterion.

Inclusion criteria for the glaucoma category were based on optic
nerve damage and not visual field defects. The classification of an eye
as glaucomatous or normal was based on the consensus of masked
evaluations of two independent graders of a stereoscopic disc photo-
graph. All photograph evaluations were accomplished using a stereo-
scopic viewer (Asahi Pentax Stereo Viewer II) illuminated with color-
corrected fluorescent lighting. Glaucomatous optic neuropathy (GON)
was defined by evidence of any of the following: excavation, neuro-
retinal rim thinning or notching, nerve fiber layer defects, or an
asymmetry of the vertical cup/disc ratio . 0.2. Inconsistencies be-
tween grader’s evaluations were resolved through adjudication by a
third evaluator.

Inclusion criteria for the normal category required that subjects
have normal dilated eye examinations, open angles, and no evidence of
visible GON. Normal optic discs had a cup-to-disc ratio asymmetry #

0.2, intact rims, and no hemorrhages, notches, excavation, or nerve
fiber layer defects. Normal subjects had intraocular pressure (IOP) #
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22 mm Hg with no history of elevated IOP. Excluded from the normal
population were suspects with no GON and with IOP $ 23 mm Hg on
at least two occasions. These suspects are part of a separate study on
classification of stratified patient populations.

Only one eye per patient was included in the study. If both of the
eyes met the inclusion criteria, only one of the eyes was selected at
random. The final selection of eyes totaled 345, including 189 normal
eyes (age, 50.0 6 6.7 years; mean 6 SD) and 156 eyes with GON
(62.3 6 12.4 years).

Optic Nerve Photographs. Color simultaneous stereoscopic
photographs were obtained using a Topcon camera (TRC-SS; Topcon
Instrument Corp of America, Paramus, NH) after maximal pupil dila-
tion. These photographs were taken within 6 months of the field in the
data set. Stereoscopic disc photographs were recorded for all patients
with the exception of a subset of normal subjects (n 5 95) for whom
photography was not available. These normal subjects had no evidence
of optic disc damage with dilated slit-lamp indirect ophthalmoscopy
with a hand-held 78 diopter lens.

Visual Field Testing. All subjects had automated full threshold
visual field testing with the Humphrey Field Analyzer (HFA; Humphrey-
Zeiss, Dublin, CA) with program 24-2 or 30-2. The visual field locations
in program 30-2 that are not in 24-2 were deleted from the data and
display.

Summary Statistics. The HFA perimetry test provides a statis-
tical analysis package referred to as STATPAC 2 to aid the clinician in
the interpretation of the visual field results. A STATPAC printout
includes the numerical plot of absolute sensitivity at each test point,
grayscale plot of interpolated raw sensitivity data, numerical plot and
probability plot of total deviation, and numerical plot and probability
plot of pattern deviation.14 Global indices are statistical classifiers
tailored to SAP: mean deviation (MD), pattern SD (PSD), short-term
fluctuations (SF),15 corrected pattern SD (CPSD), and glaucoma hemi-
field test (GHT).16 The clinician uses these plots and indices to estimate
the likelihood of glaucoma from the pattern of the visual field.

Visual Field Presentation to Glaucoma Experts. Two glau-
coma experts masked to patient identity, optic nerve status, and
diagnosis independently interpreted the perimetry as glaucoma or
normal. We elected to compare the human experts, STATPAC, and the
machine classifiers with each type of classifier having received equiv-
alent input. The printout given to the glaucoma experts for evaluation
was the numerical plot of the total deviation, because that was the
format closest to the data supplied to the machine classifiers (absolute
sensitivities plus age) that the experts were used to interpreting.

Visual Field Presentation to Machine Classifiers. The in-
put to the classifiers for training and diagnosis included the absolute
sensitivity in decibels of each of the 52 test locations (not including
two locations in the blind spot) in the 24-2 visual field. These values
were extracted from the Humphrey field analyzer using the Peridata
6.2 program (Peridata Software GmbH, Huerth, Germany). Because the
total deviation numerical plots used by the experts were derived using
the age of the subject, an additional feature provided to the machine
classifiers was the subject’s age.

Classification

The basic structure of a classifier is input, processor, and output. The
input was the visual field sensitivities at each of 52 locations plus age.
The processor was a human classifier, such as a glaucoma expert; a
statistical classifier, such as the STATPAC global indices; or a machine
classifier. The output was the presence or absence of glaucoma.

Supervised learning classifiers learn from a teaching set of examples
of input–output pairs; for each pattern of data, the corresponding
desired output of glaucoma or normal is known. During supervised
learning, the classifier compares its predictions to the target answer
and learns from its mistakes.

Data Preprocessing. Some classifiers have difficulty with high-
dimension input. Principal component analysis (PCA) is a way of
reducing the dimensionality of the data space by retaining most of the
information in terms of its variance.17 The data are projected onto their

principal components. The first principal component lies along the
axis that shows the highest variance in the data. The others follow in
a similar manner such that they form an orthogonal set of basis
functions. For the PCA basis, the covariance matrix of the data are
computed, and eigenvalues of the matrix are ordered in a decreasing
manner.

Statistical Classifiers. Learning statistical classifiers use multi-
variate statistical methods to distinguish between classes. There are
limitations from this approach. These methods assume that a certain
form, such as linearity (homogeneity of covariance matrices), charac-
terizes relationships between variables. Failure of data to meet these
requirements degrades the classifier’s performance. Missing values and
the quality of the data may be problematic. With statistical classifiers,
such as linear discriminant function, the separation surface configura-

tion is usually fixed.
Linear Discriminant Function. Linear discriminant function

(LDF) learned to map the 53-feature input into a binary output of
glaucoma and not glaucoma. A separate analysis was done with the
53-dimension full data set reduced to eight-dimension feature set by

PCA.
Analysis with STATPAC Global Indices. The global indices,

MD, PSD, and CPSD, were tested in the same fashion as the machine
classifiers, with receiver operating characteristic (ROC) curves and
with sensitivity values at defined specificities. The sensitivity and spec-
ificity for the glaucoma hemifield test result were computed by con-
verting the plain text result output, “outside normal limits” vs. “within
normal limits” or “borderline,” to glaucoma versus normal by combin-
ing the “borderline” into the “normal” category.

Machine Classifiers. The attractive aspect of these classifiers is
their ability to learn complex patterns and trends in data. As an
improvement compared with statistical classifiers, these machine clas-
sifiers adapt to the data to create a decision surface that fits the data
without the constraints imposed by statistical classifiers.18 Multilayer
perceptrons (MLP), support vector machines (SVM), mixture of Gauss-
ian (MoG), and mixture of generalized Gaussian (MGG) are effective
machine classifiers with different methods of learning and reasoning.
The following paragraphs describe the training of each classifier type.
Readers who want detailed descriptions with references of the ma-

chine classifiers will find them in the Appendix.19–33

Multilayer Perceptron with Learning by Backpropaga-
tion of Error Correction. The multilayer perceptron was set up
with the Neural Network toolbox 3.0 of MATLAB. The training was
accomplished with the Levenberg-Marquart (LM) enhancement of
backpropagation. The data for each of the 53 input nodes were renor-
malized by removing the mean and dividing by the SD. The input nodes
were fed into one hidden layer with 10 nodes activated by hyperbolic
tangent functions. The output was a single node with a logistic func-
tion for glaucoma (1) and normal (0). The learning rate was chosen by
the toolbox itself. Training was stopped early when no further de-
crease in generalization error was observed in a stopping set. The

sensitivity–specificity pairs were plotted as the ROC curve.
Support Vector Machine. The class y for a given input vector,

x, was y(x) 5 sign (Oi51
p

ai yiK(x, xi ) 1 b), where b was the bias, and
the coefficients ai were obtained by training the SVM. The SVMs were
trained by implementing Platt’s sequential minimal optimization algo-
rithm in MATLAB.34–36 The training of the SVM was achieved by
finding the support vector components, xi and the associated weights,
ai. For the linear function, K(x,xi ), the linear kernel was (x z xi ), and
the Gaussian kernel was exp(20.5(x 2 xi )

2/s2). The penalty used to
avoid overfit was C 5 1.0 for either the linear or Gaussian kernel. With
the Gaussian kernel, the choice of s depended on input dimension, s
} =53 or s } =8. The output was constrained between 0 and 1 with
a logistic regression. If the output value was on the positive side of the
decision surface, it was considered glaucomatous; if it was on the
negative side of the decision surface, it was considered nonglaucoma-
tous. When generating the ROC curve, scalar output of the SVMs was
extracted so that the decision threshold could be varied to obtain
different sensitivity–specificity pairs for the ROC curve.
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Mixture of Gaussian and Mixture of Generalized Gauss-
ian. To train the classifier, in general the data are analyzed to deter-
mine whether unsupervised learning finds more than one cluster for
each of the classes. The assumption is that the class conditional density
of the feature set approximates a mixture of normal multivariate
densities for each cluster of each class (e.g., glaucoma or not glauco-
ma). The training is accomplished by fitting mixture of Gaussian
densities to each class by maximum likelihood. With the class condi-
tional density modeled as a mixture of multivariate normal densities for
each class, Bayes’ rule is used to obtain the posterior probability of the
class, given the feature set in a new example.

Mixture of Gaussian was performed both with the complete 53-
dimension input and with the input reduced to 8 dimensions by PCA.
The computational work of training with the 53-dimension input was
made manageable by limiting the clusters to one each for normal and
glaucoma populations in the teaching set. This limitation yielded per-
formance similar to quadratic discriminant function (QDF). The train-
ing was accomplished by fitting the glaucoma and normal populations
each with a multivariate Gaussian density. For SAP vectors, x, we
computed P[xuG] and P[xuG]. From these conditional probabilities, we
could obtain the probability of glaucoma for a given SAP, x, by Bayes
rule.

Because of the limited number of patients compared with the
dimension of the input space, we also analyzed the data with the
feature space reduced to eight dimensions with PCA, which contained
.80% of the original variance. The number of clusters in each group,
generally two, was chosen to optimize ROC area. The ROC curve was
generated by varying the decision threshold.

Training of mixture of generalized Gaussian was similar to that
done for MoG, except it was accomplished by gradient ascent on the
data likelihood.37 MGG was trained and tested only with input reduced
to eight dimensions by PCA.

Statistical Analysis

Sensitivity and Specificity. The sensitivity (the proportion of
glaucoma patients classified as glaucoma) and the specificity (the
proportion of normal subjects classified as normal) depend on the
placement of the threshold along the range of output for a classifier. To
ease the comparison of the classifiers, we have displayed the sensitivity
at defined specificities (Table 1).

ROC Curve. An ROC curve was constructed for each of the
global indices and each of the learning classifiers (Table 1). The area
under the ROC curve, bounded by the ROC curve, the abscissa, and the
ordinate, quantified the diagnostic accuracy of a test in a single num-
ber, with 1 indicating perfect discrimination and 0.5 signifying discrim-
ination no better than random assignment.

The area under the ROC curve served as a comparison of the
classifiers. A number of statistical approaches have been developed for
determining a significant difference between two ROC curves.38–42

The statistical test we used for significant difference between ROC
curve areas was dependent on the correlation of the curves (Table 2).39

Without preselection of the comparisons, there were 45 comparisons
of classifiers. For a 5 0.05, the Bonferroni adjustment required P #

0.0011 for the difference to be considered significant (Table 2).
The shape of the ROC curve can vary; one curve may compare

favorably with another at low specificity but differ at high specificity.
To compare the same region of multiple ROC curves, we compared the
sensitivities at particular specificities.

Cross Validation. The ultimate goal is that a learning classifier
should become trained well enough on its teaching examples (ap-
parent error rate) to be able to generalize to new examples (actual
error rate). The actual error rate was determined with cross valida-
tion. We randomly partitioned the glaucoma patients and the nor-
mal subjects each into 10 partitions and combined one partition
from the glaucoma patients with one partition from the normal
subjects to form each of the 10 partitions of the data set. One
partition of the data set became the test set, and the remaining nine
partitions of the data set were combined to form the teaching set.
During the training of the multilayer perceptron, another set was
used as a stopping set to determine when training was complete,
and the eight remaining partitions were combined into the teaching
set.43 The training-test process was repeated until each partition
had an opportunity to be the test set. Because the classifier was
forced to generalize its knowledge on previously unseen data, we
determined the actual error rate.

Comparisons

The STATPAC global indices, statistical classifier, and machine classi-
fiers were compared by the area under the entire ROC curve.39 Glau-
coma experts consider the cost of a false positive to be greater than a

TABLE 1. Comparison of Sensitivities at Particular Specificities and Comparison of Areas under Entire ROC Curve

Sensitivity at
Specificity 5 1

Sensitivity at
Specificity 5 0.9

Specificity
of Expts.

Sensitivity
of Expts. ROC Area 6 SE

Human Experts on Standard
Automated Perimetry

Expt 1 0.96 0.75
Expt 2 0.59 0.88

STATPAC Global Indices
MD 0.45 0.65 0.837 6 0.022
PSD 0.61 0.76 0.884 6 0.020
CPSD 0.64 0.74 0.844 6 0.025
GHT 0.67

Statistical Classifier
LDF 0.32 0.60 0.832 6 0.023
LDF with PCA 0.48 0.64 0.879 6 0.018

Machine Classifiers
MLP 0.25 0.75 0.897 6 0.017
MLP with PCA 0.54 0.71 0.893 6 0.018
SVM linear 0.44 0.69 0.894 6 0.017
SVM linear with PCA 0.51 0.67 0.887 6 0.018
SVM Gaussian 0.53 0.71 0.903 6 0.017
SVM Gaussian with PCA 0.57 0.75 0.899 6 0.017
MoG (QDF) 0.61 0.79 0.917 6 0.016
MoG (QDF) with PCA 0.67 0.78 0.919 6 0.016
MoG with PCA 0.67 0.79 0.922 6 0.015
MGG with PCA 0.01 0.78 0.906 6 0.022

Boldface indicates high performer within grouping of classifiers.
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false negative. A high specificity is desirable because the prevalence of
glaucoma is low and progression is very slow. The left-hand end of the
ROC curves are of interest when high specificity is desired. Conse-
quently, we also compared the sensitivities at specificities 0.9 and 1.0.

Sensitivity–specificity pairs that did not correspond to specificities
0.9 and 1.0 were indicated on the ROC plots (see Figs. 1 through 3).
The classification results of the two glaucoma experts and the glau-
coma hemifield test were represented on the ROC plots by single
sensitivity–specificity pairs. We compared the sensitivity of the classi-
fiers at specificity 1.0 for comparison with GHT, at specificity 0.995.
We also analyzed the false-positive and false-negative visual fields for
each of the classifiers.

RESULTS

Normal and Glaucoma Groups

The mean and SD of the visual field MD of the patients in the
glaucoma group was 23.9 6 4.3 dB. Most glaucoma patients
had early to moderate glaucoma; only 3 of the 156 glaucoma
patients had advanced glaucoma.

Glaucoma Experts

The current results of the comparison of classifiers for SAP are
summarized in Table 1 and Figures 1 through 3. Expert 1,
analyzing SAP total deviation numeric plots, had a sensitivity of
0.75 and a specificity of 0.96. Expert 2 had a sensitivity of 0.88
and a specificity of 0.59. These values were similar to the best
of STATPAC and the best machine classifiers (see Fig. 3 and
Table 1).

STATPAC 2 and Statistical Classifiers

The global indices with the highest ROC areas were PSD and
CPSD (Fig. 1 and Tables 1 and 2). Correction of PSD for
short-term fluctuation (CPSD) resulted in a difference in the
area for the entire ROC curve, but it was PSD that had the
higher ROC area. Only at specificity 1 was the sensitivity of
CPSD greater than PSD, but not significantly. MD had lower

area under the ROC curve than CPSD and PSD. There was poor
correlation between MD and PSD (r 5 0.55) and between MD
and CPSD (r 5 0.42).

GHT is a special case, because it is constrained to a speci-
ficity of 0.995. It is therefore best compared with results of all
the classifiers at specificity 5 1. With our data, GHT had no
false positives; hence, its specificity was 1. At specificity 1, the
other global indices had sensitivities less than GHT (0.67).

Linear discriminant function is a statistical classifier that is
not specifically designed for SAP. The area under the entire
ROC curve was similar for LDF (0.832) and MD (0.837). The
sensitivity of LDF was less than all the global indices at high
specificities (Fig. 1). Reducing the dimension of the feature set
to eight by PCA improved ROC area of LDF (0.879), but not
quite significantly (P 5 0.0038, compared with the Bonferroni
cutoff of 0.0011). There was poor correlation between LDF
with PCA and between PSD and CPSD (r 5 0.48 and 0.38,
respectively).

Machine Classifiers

PCA did not improve the ROC areas for MLP, SVM linear, or
SVM Gaussian (Table 1). These classifiers were able to learn
and classify from high-dimension data. Mixture of Gaussian and
Mixture of Generalized Gaussian are less efficient with high-
dimension input. Reducing the dimensionality of the input by
PCA permitted two clusters for glaucoma and one cluster for
normal, which allowed the full capabilities of these classifiers
to manifest. MoG with PCA had higher area under the ROC
curve (0.922) than MoG constrained to QDF (0.917) with the
full data set, yet it was MoG constrained to QDF that was
significantly higher than PSD (P 5 0.0009), because there was
higher correlation between the curves for PSD and MoG con-
strained to QDF. Removing age from the data set lowered the
area under the curve for MoG constrained to QDF by 0.008
(from 0.917 to 0.909). Though MoG with PCA reported a
higher sensitivity (0.673) at specificity 1 than GHT (0.667),
these values were similar.

TABLE 2. Significance of Difference (P) of Compared ROC Area and Correlation Coefficients for Values along the Compared Curves

Classifier MD PSD CPSD LDF PCA* MLP SVM linear SVM Gauss MoG(QDF)† MoG PCA MGG PCA

ROC Area 0.837 0.884 0.844 0.879 0.878 0.894 0.903 0.916 0.922 0.906

MD P value 0.019 0.77 0.018 0.007 0.0001 <0.00005 <0.00005 <0.00005 0.0005
0.837 Correlation 0.55 0.42 0.61 0.60 0.76 0.76 0.54 0.56 0.49

PSD 0.022 0.83 0.44 0.55 0.19 0.0009 0.006 0.18
0.884 0.73 0.48 0.55 0.56 0.69 0.88 0.72 0.60

CPSD 0.16 0.024 0.034 0.007 0.0003 0.0001 0.004
0.844 0.38 0.42 0.42 0.52 0.58 0.62 0.54

LDF PCA 0.13 0.56 0.020 0.021 0.0055 0.10
0.879 0.77 0.91 0.83 0.56 0.58 0.55

MLP 0.71 0.55 0.17 0.10 0.60
0.878 0.86 0.85 0.65 0.56 0.53

SVM linear 0.18 0.12 0.048 0.44
0.894 0.92 0.63 0.62 0.58

SVM Gauss 0.26 0.15 0.84
0.903 0.75 0.67 0.60

MoG(QDF) 0.68 0.52
0.916 0.62 0.50

MoG PCA 0.044
0.922 0.88

Boldface indicates statistical significance after Bonferroni adjustment (P , 0.0011 for a , 0.05). Italics signify correlation coefficient.
*PCA indicates that full data set of 53 features was reduced to 8 features by principal component analysis for classifiers that have difficulty with

high-dimension data sets.
†MoG(QDF) means MoG with full data set constrained to one cluster each for normal and glaucoma populations, approaching characteristics

of quadratic discriminant function.
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MGG analysis was done only with PCA, because of the
complexity of this analysis with the full data set input. There
was one cluster for each class. The two MoG curves and the
MGG curve were similar between specificities 0.9 and 1, and
all three had higher sensitivities than the other machine clas-
sifiers in this range (Fig. 2 and Table 1).

Errors

The best expert had a specificity of 0.96. Therefore, we eval-
uated the incorrect classifications by the best of each type of

classifier (MoG, expert 1, and PSD) at specificity 0.96. Table 3
demonstrates visual field characteristics of the eyes with GON
that were misclassified as normal (false negatives) by the best
classifier of each type at specificity 0.96. There was no signif-
icant difference in the number of false negatives of each clas-
sifier (41, 39, and 41, respectively). Of these, 37 (90%), 37
(95%), and 40 (98%), respectively, had visual fields character-
ized as normal; there was no significant difference in these
values. The means of the mean deviation, number of total
deviation locations with probability , 5%, number of pattern
deviation locations with probability , 5%, and number of
contiguous pattern deviation locations with probability , 5%
were all within the range considered clinically normal and
were similar for each classifier. The concordance of false neg-
atives was 0.94 between MoG and PSD, 0.92 between MoG and
expert 1, and 0.94 between expert 1 and PSD. Thirty-four fields
were misclassified by all three classifiers.

Table 4 displays the visual field characteristics of the normal
eyes that were misclassified as glaucomatous (false positives).
All the misclassified fields had visual fields characterized as
normal, except for one normal field misclassified by PSD that
had characteristics of early field loss. The means of the STAT-
PAC plots described above were all in the normal range and
were similar between classifiers. The concordance of the false
positives was 0.96 between MoG and PSD, 0.98 between MoG
and expert 1, and 0.96 between expert 1 and PSD. Three fields
were misclassified by all three classifiers.

DISCUSSION

The new machine classifiers are quite effective in interpreting
SAP, because they compare favorably with current classifica-
tion methods with STATPAC and because they performed at
least as well as trained glaucoma experts. Several factors may
further improve the performance of the classifiers relative to
human experts and STATPAC: (1) A larger normative group,
such as that used in STATPAC may improve the classifiers
discriminative performance. (2) It is possible that the classifiers
might have done even better if they had been compared with
general ophthalmologist, optometrists, or residents who are

FIGURE 1. ROC curves for global indices from STATPAC and another
statistical classifier, LDF with PCA. The glaucoma experts and GHT are
indicated by single sensitivity–specificity pairs denoted by solid circles.

FIGURE 2. ROC curves for the best of each type of machine classifier.
The glaucoma experts and GHT are superimposed on the curves as
described in Figure 1.

FIGURE 3. ROC curves comparing the best of the machine classifiers
with the best of the STATPAC global indices. The glaucoma experts
and GHT are superimposed on the curves as described in Figure 1.
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less familiar with grading visual fields, but this remains to be
studied. (3) The normal subjects in this study did not have
visual field experience for the most part; whereas, most of the
patients with GON had such prior experience. It is well doc-
umented that learning effects can occur during the first two
visual fields.

The appearance of the optic nerve was the indicator for
glaucoma. Issues concerning the shape of the optic nerve head
could have affected the training of the classifiers, and idiosyn-
crasies of optic nerve head shape in the study sample might
have impacted the representativeness of the classifiers. For
example, if diffuse rim loss is underrepresented in the study
sample and diffuse rim loss is associated with diffuse field loss,
then the true discriminatory potential of the MD (relative to
PSD or CPSD) might have been underestimated in the study.

The better performance of the global indices in STATPAC
compared with LDF demonstrates the benefit of designing
classifiers specifically for the data from SAP. The machine
classifiers are general classifiers that are not optimized for SAP
data. Nevertheless the MoG constrained to QDF and the MoG
with PCA each significantly outperformed the global indices as
measured by area under the entire ROC curve. The MoG
classifiers functioned no better than PSD in the high-specificity
region. The two MoG classifiers gave the same results as the
GHT at the usual specificity of the GHT test.

The differences between the individual machine classifiers
are greatest at high specificities, a property considered desir-
able for glaucoma diagnosis. Because most of the difference
between the two MoG curves and the rest of the machine
classifiers was in the high-specificity region, we can infer that
the difference between these curves was due mostly to the
separation of the curves in the high-specificity region.

Though age minimally improves the learning and diagnosis
with the machine classifiers, it is uncertain how age contrib-
utes. It is possible that age combines with the visual field
locations in a manner similar to the way age transforms the
absolute numerical plot to the total deviation numerical plot. It
is equally plausible that the classifier simply adjusts for the
mean age of 50 for normal population and 62.3 in the glaucoma
population.

The 34 false negatives of 156 and the 3 false positives of 189
that were misclassified by all three classifiers representing the
best of each classifier type may be close to the minimal error
attainable from visual fields, given that the gold standard for
glaucoma in this study is GON. Analysis of the patterns of the
fields misdiagnosed by the three classifiers indicates that the
false negatives or false positives appear normal.

It is difficult to compare our results with other efforts at
automated diagnosis from visual fields, because the study pop-
ulations were different and other studies used human interpre-
tation of visual fields as a gold standard for the diagnosis of
glaucoma.8,44,45 Spenceley et al.45 reported sensitivity of 0.65
and 0.90 at specificities 1.0 and 0.96, respectively, with MLP;
the MLP was taught which fields were glaucomatous and
which were normal from an interpretation of the fields by an
observer. We obtained sensitivities of 0.67 and 0.73 at these
specificities with MoG, our best classifier; the machine classi-
fiers were taught which fields were glaucomatous and which
were normal from an interpretation of the optic nerve for the
presence of GON by the consensus of two observers. Research-
ers using pattern recognition methodology consider that an
indicator other than the test being evaluated should be used as
a gold standard for teaching the classifiers. Also, if the human
interpretation of the visual field is used as the indicator for
teaching the classifier, the classifier cannot exceed the human
interpreter in accuracy. With GON as the indicator of disease,
we found that the MoG machine classifiers generated ROC
curves that were higher than the sensitivity–specificity pairs
from glaucoma experts. Other studies used MLPs for auto-
mated diagnosis.5,8,44,45 We found that the ROC curves of the
MoG machine classifiers were higher than the curve for MLP,
particularly in the high-specificity region. This observation im-
plies that the MoG classifiers perform better than the MLP used
in previous reports.

After long-term experience with SAP, glaucoma experts
have learned how to interpret the results. The glaucoma ex-
perts performed well, but no better than the machine classifi-
ers. There are newer perimetric tests, such as short-wavelength
automated perimetry (SWAP),46,47 and frequency-doubling
technology perimetry (FDT),48,49 with which clinicians and
researchers have less experience. It is likely that machine
classifiers will be able to learn from these data and exceed the
ability of glaucoma experts in interpreting these tests.

This report describes our success at identifying new ma-
chine classifiers that compare favorably with the current inter-
preters of standard automated perimetry. The benefits that
refined information from machine classifiers may add to the
plots and indices that STATPAC offers in a clinical setting may
can be addressed in future studies. There are methods that can
improve even more the performance of the machine classifiers
in interpreting perimetry and in extracting information from
the perimetry. Classification may be improved by finding better
data to distinguish the classes, by identifying better classifiers,
or by optimizing the process. The newer perimetry tests,

TABLE 3. False Negatives out of 156 GON at Specificity 0.96 with Best of Each Classifier Type

MoG (n 5 41) Expt. 1 (n 5 39) PSD (n 5 41) All Three (n 5 34)

Mean Deviation 20.80 6 1.49* 0.74 6 1.58 0.82 6 1.67 0.52 6 1.36
No. of points P , 5% total deviation 3.95 6 4.89 4.03 6 5.87 4.49 6 7.06 2.82 6 3.91
No. of points P , 5% pattern deviation 3.02 6 3.55 2.36 6 1.97 2.32 6 1.85 2.09 6 1.94
No. of contiguous points pattern deviation P , 5% 1.80 6 2.46 1.26 6 1.27 1.20 6 1.19 1.15 6 1.23

Values are means 6 SD, with no. of GON called normal in parentheses.

TABLE 4. False Positives at Specificity 0.96 with Best of Each Classifier Type

MoG (n 5 8) Expt. 1 (n 5 8) PSD (n 5 8) All Three (n 5 3)

Mean deviation 21.13 6 1.77 21.91 6 0.82 21.63 6 1.28 22.29 6 0.68
No. of points P , 5% total deviation 7.13 6 6.01 8.32 6 5.83 7.88 6 6.13 12.00 6 6.00
No. of points P , 5% pattern deviation 6.13 6 4.45 5.75 6 4.43 6.63 6 4.10 10.00 6 4.58
No. of contiguous points pattern deviation P , 5% 2.63 6 2.20 3.00 6 1.69 3.00 6 1.85 4.67 6 1.53
Normal field 8 8 7 3

Values are means 6 SD, with no. of GON called normal in parentheses.
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SWAP and FDT, are examples of efforts to improve the data set.
This report describes the identification of the best classifiers
for SAP with our data set. In a separate report we will describe
the optimization of the process that results from identifying the
most useful visual field locations and from removing the non-
contributing field locations. In addition, these methods may
need adjustment for different patient populations, and valida-
tions in a variety of settings will be needed.

Our experience with machine learning classifiers indicates
that there is additional useful information in visual field tests
for glaucoma. Machine classifiers are able to discover and use
perimetric information not obvious to experts in glaucoma.
There are a number of applications in ophthalmic research to
which classifier methodology could be applied.

APPENDIX

Multilayer Perceptron

The multilayer perceptron (MLP) is one of the most popular
architectures among other neural networks for its efficient
training by error backpropagation.19–21 The MLP has been
successfully applied to a wide class of problems, such as face
recognition22 and character recognition.23 The architecture is
a universal feed-forward network; the input layer and output
layer of nodes are separated by one or more hidden layers of
nodes. The hidden layers act as intermediary between the
input and output layers, enabling the extraction of progres-
sively useful information obtained during learning. The activa-
tion function of each neuron uses a sigmoid function to ap-
proximate a threshold or step. The use of a continuous sigmoid
function instead of a step function enables the generation of an
error function for correcting the weights. The sigmoid func-
tion may be logistic or hyperbolic tangent.

During learning, there are two passes through the layers of
the network. In the forward pass, the data in the input source
nodes are weighted by the connections, summed, and trans-
formed by the activation function. This process continues up
the layers to the output node, where the values generated are
compared with the desired output. The error signal is passed
backward to reinforce or inhibit each weight. Each sample in
the teaching set is similarly processed. The procedure is re-
peated for the entire teaching set, descending the error surface
until there is an acceptably low total error rate for the stopping
set. The ability of the network to generalize what it has learned
is tested with a set of data different from the teaching set.

Support Vector Machine

Support Vector Machines (SVMs) are a new class of learning
algorithms that are able to solve a variety of classification and
regression (model fitting) problems.24,25 They exploit statisti-
cal learning theory to minimize the generalization error when
training a classifier. SVMs have generalized well in face recog-
nition,26 text categorization,27 recognition of handwritten dig-
its,28 and breast cancer diagnosis and prognosis.29

For a two-class classification problem, the basic form of
SVM is a linear classifier, f(u) 5 sign(u) 5 sign(wTx 1 b),
where x is the input vector, w is the adjustable weight vector,
wTx 1 b 5 0 is the hyperplane decision surface, f(u) 5 21
designates one class (e.g., normal) and f(u) 5 1 the other class
(e.g., glaucoma). For linearly separable data, the parameters w
and b are chosen such that the margin (}1/uwu) between the
decision plane and the training examples is at maximum. This
results in a constrained quadratic programming (QP) problem
in search for the optimal weight w.

After training, w 5 Oi51
p

aiyix, where p is the number of
support vectors, ai is the contribution from the support vector
xi, and yi is the training label. The output of the SVM is u(x) 5

Oi51
p

aiyixi
Tx 1 b. Instead of a hard (glaucoma or not glau-

coma) decision function, we convert the SVM output u(x) into
a probabilistic one, using a logistic transformation.36

In a more general setting, the training for classification of
SVMs is accomplished by non-linear mapping of the training
data to a high dimensional space, Ww(x), where an optimal
hyperplane can be found to minimize classification errors.30 In
this new space, the classes of interest in the pattern classifica-
tion task are more easily distinguished. Although the separating
hyperplane is linear in this high dimensional space induced by
the non-linear mapping, the decision surface found by map-
ping back to the original low-dimensional input space will not
be linear any more. As a result, the SVMs can be applied to data
that are not linearly separable.

For good generalization performance, the SVM complexity
is controlled by imposing constraints on the construction of
the separating hyperplane, which results in the extraction of a
fraction of the training data as support vectors. The subset of
the training data that serves as support vectors thereby repre-
sents a stable characteristic of the data. As such they have a
direct bearing on the optimal location of the decision surface.
The hyperplane will attempt to split the positive examples
from the negative examples. The system recognizes the test
pattern as normal or glaucoma from the sign of the calculated
output and thereby classifies the input data. After the non-
linear mapping and training, the output of SVM is given by
u(x)Oi51

p
aiyiK(xi,x) 1 b, where K(xi,x) 5 Ww

T
(x) Ww(xi ) and is

called the kernel function. A full mathematical account of the
SVM model is described by Vapnik.24

Mixture of Gaussian

Mixture of Gaussian (MoG) is a special case of committee
machine.31 In committee machines, a computationally com-
plex task is solved by dividing it into a number of computa-
tionally simple tasks.32 For the supervised learning, the com-
putational simplicity is achieved by distributing the learning
task among a number of “experts” that divide the input space
into a set of subspaces. The combination of experts makes up
a committee machine. This machine fuses knowledge acquired
by the experts to arrive at a decision superior to that attainable
by any one expert acting alone. In the associative mixture of
Gaussian model (MoG), the experts use self-organized learning
(unsupervised learning) from the input data to achieve a good
partitioning of the input space. Each expert does well at mod-
eling its own subspace. The fusion of their outputs is combined
with supervised learning to model the desired response.

Mixture of Generalized Gaussian

Whereas the conditional probability densities for some prob-
lems are Gaussian, in others the data may distribute with
heavier tails or may even be bimodal. It would be undesirable
to model these problems with Gaussian distributions. With the
development of generalized Gaussian mixture model,37 we are
able to model the class conditional densities with higher flex-
ibility, while preserving a comprehension of the statistical
properties of the data in terms of means, variances, kurtosis,
etc. This just-evolved approach was developed at the Salk
Institute computational neurobiology laboratory. The indepen-
dent component analysis mixture model can model various
distributions, including uniform, Gaussian, and Laplacian. It
has been demonstrated in real-data experiments that this
model generally improves classification performance over the
standard Gaussian mixture model.33 The mixture of general-
ized Gaussians (MGG) uses the same mixture model as MoG.
However, each cluster is now described by a linear combina-
tion of non-Gaussian random variables.
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