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Epilepsy is a neurological disorder characterized by the sudden occur-
rence of unprovoked seizures. There is extensive evidence of signifi-
cantly altered brain connectivity during seizure periods in the human
brain. Research on analyzing human brain functional connectivity dur-
ing epileptic seizures has been limited predominantly to the use of the
correlationmethod. However, spurious connectivity can bemeasured be-
tween two brain regions without having direct connection or interaction
between them. Correlations can be due to the apparent interactions of
the two brain regions resulting from common input from a third region,
whichmay ormay not be observed. Hence, researchers have recently pro-
posed a sparse-plus-latent-regularized precision matrix (SLRPM) when
there are unobserved or latent regions interacting with the observed

Neural Computation 31, 1271–1326 (2019) © 2019 Massachusetts Institute of Technology
doi:10.1162/neco_a_01205



1272 A. Das et al.

regions. The SLRPMmethod yields partial correlations of the conditional
statistics of the observed regions given the latent regions, thus identi-
fying observed regions that are conditionally independent of both the
observed and latent regions. We evaluate the performance of the meth-
ods using a spring-mass artificial network and assuming that some nodes
cannot be observed, thus constituting the latent variables in the exam-
ple. Several cases have been considered, including both sparse and dense
connections, short-range and long-range connections, and a varying num-
ber of latent variables. The SLRPM method is then applied to estimate
brain connectivity during epileptic seizures from human ECoG record-
ings. Seventy-four clinical seizures fromfive patients, all having complex
partial epilepsy,were analyzedusingSLRPM, andbrain connectivitywas
quantified using modularity index, clustering coefficient, and eigenvec-
tor centrality. Furthermore, using a measure of latent inputs estimated
by the SLRPM method, it was possible to automatically detect 72 of the
74 seizures with four false positives and find six seizures that were not
marked manually.

1 Introduction

1.1 The Caveat in the Correlation, Precision Matrix, and Sparse-
Regularized PrecisionMatrix Methods. The correlation method is widely
used for estimating brain functional connectivity (Anand et al., 2005;
Biswal, Yetkin, Haughton, &Hyde, 1995; Bruno et al., 2017; Chu et al., 2015;
Lynall et al., 2010; Rubinov & Sporns, 2010; Saggar et al., 2015; Shafi, West-
over, Oberman, Cash, & Pascual-Leone, 2014; Siegle, Thompson, Carter,
Steinhauer, & Thase, 2007; Smith et al., 2011; Uddin et al., 2009; Vertes et al.,
2012; Zhou, Thompson, & Siegle, 2009). This method has been used to an-
alyze large-scale resting-state brain networks (Biswal et al., 1995; Cordes
et al., 2000; Fox, Corbetta, Snyder, Vincent, & Raichle, 2006; Fox et al., 2005;
Greicius, Krasnow, Reiss, & Menon, 2003; Hampson, Peterson, Skudlarski,
Gatenby, & Gore, 2002; Uddin et al., 2009; Xiong, Parsons, Gao, & Fox,
1999) in healthy subjects, as well as altered brain functional connectivity
in pathology (Anand et al., 2005; Supekar et al., 2008) in the human brain.
However, connectivity estimation using the correlation method can be mis-
leading or incorrect since brain regions might show high correlation due to
a common input, which may or may not be measured or observed, and not
due to strong physical connections between them (Wang, Kang, Kemmer, &
Guo, 2016). In a recent functionalmagnetic resonance imaging (fMRI) study
from 210 healthy young adults in the Human Connectome Project (HCP),
researchers have been able to identify many new areas in the human cor-
tex using a machine learning classifier (Glasser et al., 2016). Pairs of these
areas with a high degree of functional connectivity also received common
input from other areas of the human brain. Honey et al. (2009) measured
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the functional connectivity from fMRI in five individuals using the correla-
tion method, and several brain regions showed a high degree of functional
connectivity without having direct connections. This provides further evi-
dence that brain regions can have high correlations due to common inputs
rather than direct interactions.

Due to this major drawback of the correlation method, researchers have
suggested using partial correlations to measure strong, direct interactions
between pairs of brain regions while simultaneously removing the influ-
ence of the rest of the brain regions (Das et al., 2017; Dempster, 1972; Lau-
ritzen, 1996; Whittaker, 1990), assuming all the regions can be measured.
Partial correlations help identify pairwise brain regions that are condition-
ally independent given all the other brain regions. When the output of the
brain regions follows a multivariate gaussian distribution, the inverse co-
variance matrix (ICM) or precision matrix (PM) can be used to calculate
these partial correlations (Dempster, 1972). A value of zero or very close to
zero in the PM will indicate that the two brain regions are conditionally in-
dependent given the rest of the brain regions. Researchers (Marrelec et al.,
2007; Salvador et al., 2005) have previously used the PM to estimate the
human brain functional connectivity from fMRI.

However, a major drawback of the PM method is that under the regime
of a relatively small number of time samples, the sample covariance matrix
might not be directly invertible. Even if there are sufficient numbers of sam-
ples such that the sample covariance matrix is invertible, the estimated PM
might produce large errors in connections in a given brain network since
the sample covariance matrix is a poor estimator of the eigenvalues of the
covariance matrix (Das et al., 2017; see the simulation results in section 2).
Hence, researchers have proposed using a sparse-regularized precisionma-
trix (SRPM) to calculate the pairwise partial correlations (Friedman, Hastie,
& Tibshirani, 2008). The SRPM can be estimated by solving the following L1
regularized optimization problem for X,

arg min
X s.t.X�0

[−log det(X) + tr(SX) + λ‖X‖1
]
, (1.1)

where λ is the regularization parameter balancing the error in the maxi-
mum likelihood estimate (MLE) of the precision matrix and the sparsity
(theMLE of the precisionmatrix is the inverse of the sample covariancema-
trix according to the invariance principle) and S is the sample covariance
matrix. The effect of the L1 regularization term λ‖X‖1 is twofold. First, it
helps make the estimation of the precisionmatrix problemwell posed since
direct inversion of the sample covariance matrix is ill posed when finite
numbers of time samples are available. Second, since it promotes sparsity,
it can incorporate this assumption while estimating the human brain net-
work, which is known to be sparse (Laughlin & Sejnowski, 2003; Steriade,
McCormick, & Sejnowski, 1993). Observe that the optimization problem
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in equation 1.1 is a convex optimization problem, and several algorithms
(Banerjee, El Ghaoui, & d’Aspremont, 2008; Friedman et al., 2008; Hsieh,
Sustik, Dhillon, & Ravikumar, 2011; Hsieh, Sustik, Dhillon, Ravikumar, &
Poldrack, 2013;Oztoprak,Nocedal, Rennie, &Olsen, 2012; Rothman, Bickel,
Levina, & Zhu, 2008; Scheinberg, Ma, & Goldfarb, 2010; Yuan & Lin, 2007)
have been proposed for solving this optimization problem. For the analysis
in our letter, we use theQUIC algorithm (Hsieh et al., 2011, 2013) to estimate
the SRPM for its relatively fast computation time.

Hsieh et al. (2011, 2013) have applied the SRPMmethod to an fMRI data
set collected from the human brain. After applying modularity-based clus-
tering (Blondel, Guillaume, Lambiotte, & Lefebvre, 2008; Brandes et al.,
2008; Newman & Girvan, 2004; Newman, 2006; Reichardt & Bornholdt,
2006; Ronhovde & Nussinov, 2009; Sporns, 2010; Sun, Danila, Josić, &
Bassler, 2009) to the regularized precision matrix, they found strong, func-
tionally connected regions in graymatter regions in the human brain, along
with identification of resting-state networks such as default mode and sen-
sorimotor networks. Themodules detected by the SRPMmethodwere sim-
ilar to those identified using independent components analysis (ICA) on
the same data set. Ryali, Chen, Supekar, and Menon (2012) applied the
SRPM method to resting-state fMRI data and found a modular architec-
ture characterized by strong interhemispheric links, distinct ventral and
dorsal stream pathways, and a major hub in the posterior medial cortex.
Varoquaux, Gramfort, Jean-Baptiste, and Thirion (2010) analyzed human
brain functional connectivity using the SRPMmethod; after clustering, they
found regions corresponding to important brain areas such as the primary
visual system (medial visual areas), the dorsal visual pathway, the occipi-
tal pole, and the intraparietal areas comprising the default mode network,
the fronto-parietal networks, the ventral visual pathway, the lateral visual
areas, and the inferior temporal lobe. Monti et al. (2014) analyzed human
brain functional connectivity using the SRPM method in healthy patients
and found that the right inferior frontal gyrus and the right inferior pari-
etal lobe play a key role in attention and executive function during cogni-
tively demanding tasks and may be fundamental in regulating the balance
between other brain regions.

Rosa et al. (2015) also have applied the SRPMmethod to distinguish pa-
tients with major depressive disorder from healthy control subjects by an-
alyzing brain functional connectivity from fMRI data. Allen et al. (2012)
analyzed brain functional connectivity using SRPM and clustering algo-
rithms from resting-state data in young adults and found connections be-
tween regions in the lateral parietal and cingulate cortex. They also found
that the dynamic functional connectivity of the human brain was markedly
different from the stationary brain connectivity. The SRPMmethod has also
been used to estimate brain functional connectivity at a neuronal level in
the mouse visual cortex in Yatsenko et al. (2015), where the authors ar-
gued that this method found more biologically plausible brain networks
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than the correlation method did. Wang, Kang, Kemmer, and Guo (2016)
applied the SRPM method to estimate human brain functional connectiv-
ity from fMRI data and compared it with the connectivity estimated by
the correlation method. They found that the SRPM method removed con-
siderable between-module connections that were estimated by the corre-
lation method. In particular, 34% of the significant connections found in
the correlation method became insignificant after calculating the partial
correlations from the SRPM method. Recently, Glasser et al. (2016) used
fMRI data of the human cerebral cortex from 210 healthy young adults and
found 97 new cortical areas, along with 83 previously existing cortical ar-
eas, with the SRPM method. They concluded that their study presents a
picture of the structural and functional organization of the human cerebral
cortex and its variation across individuals and in development, aging, and
disease.

Although the application of the SRPM method to identify functionally
connected networks in the human brain is promising, one major shortcom-
ing of this method is that it assumes that all brain regions are measurable
or observed. This assumption might lead to incorrect estimation of brain
connectivity since most brain regions remain unobserved (also known as
latent regions) using current technologies, especially in electrocorticogra-
phy (ECoG) recordings, which are used in our analysis.

1.2 Proposed Method: The Sparse-Plus-Latent-Regularized Precision
MatrixMethod. Chandrasekaran, Parrilo, andWillsky (2012) recently pro-
posed using a sparse-plus-latent-regularized precision matrix (SLRPM)
when there are unobserved or latent regions interacting with the observed
regions, which is typical of brain imaging. The SLRPM method yields par-
tial correlations of the conditional statistics of the observed regions given
the latent regions, thus identifying observed regions that are conditionally
independent of both the observed and latent regions. Here we assume that
the observed and latent variables jointly follow amultivariate gaussian dis-
tribution.We also assume that we have pnumber of observed variables and
h number of latent variables. Let the covariance matrix � of this joint distri-
bution be represented by

� =
[

�P �P,H

�H,P �H

]
, (1.2)

where �P is of dimension p× p representing the covariances of the ob-
served variables, �P,H is of dimension p× h representing the covariances
between the observed and latent variables, and �H is of dimension h× h
representing the covariances of the latent variables. Let the inverse �−1 of
this covariance matrix be represented by
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�−1 � K =
[

KP KP,H

KH,P KH

]
, (1.3)

where KP is of dimension p× p representing the dependencies of the ob-
served variables, KP,H is of dimension p× h representing the dependencies
between the observed and latent variables, and KH is of dimension h× h
representing the dependencies of the latent variables. The marginal preci-
sion matrix �−1

P of the observed variables can be given by the Schur com-
plement with regard to KH as in Chandrasekaran et al. (2012):

K̃P � �−1
P = KP − KP,HK−1

H KH,P. (1.4)

The matrix KP is the precision matrix of the conditional statistics of the ob-
served variables given the latent variables. Hence, if the underlying brain
network is sparse, thenKP is a sparsematrix. ThematrixKP,HK−1

H KH,P sum-
marizes the effect of marginalization over the latent variables. Note that the
rank of KP,HK−1

H KH,P can be at most h, and, hence, it will be of small rank
if the number of latent variables is relatively small. Thus, the marginal pre-
cision matrix K̃P is not sparse in general due to the presence of the term
KP,HK−1

H KH,P, and the SRPM method for the observed variables might not
be able to correctly identify the brain connectivity. Since from equation 1.4,
the marginal precision matrix is decomposed as a sum of a sparse matrix
and a low-rankmatrix,we impose the L1 normon the precisionmatrix of the
conditional statistics (also known as the SLRPM) and nuclear norm on the
low-rank matrix. By solving the following regularized optimization prob-
lem, X provides an estimate of the sparse matrix KP, and L provides an
estimate of the low-rank matrix KP,HK−1

H KH,P,

arg min
X,L s.t X−L�0,L�0

[−log det(X − L) + tr(S(X − L)) + α‖X‖1 + βtr(L)
]
,

(1.5)

where α and β are the regularization parameters balancing the error in the
likelihood and the sparse and low-rank terms and S is the sample covari-
ance matrix. The L1 regularization term α‖X‖1 imposes sparsity on the un-
derlying brain connectivity, and the trace or nuclear norm regularization
term β tr(L) imposes low rankness on the common inputs from the latent
or unobserved brain regions. Furthermore, these regularizations make the
optimization problem well behaved when we have a finite number of sam-
ples. The optimization problem in equation 1.5 is a convex problem, and
we use the alternating direction method of multipliers (ADMM; Ma, Xue,
& Zou, 2013) to estimate the SLRPM for our analysis. Note that the SRPM
and SLRPM have to be normalized to obtain the partial correlations (Whit-
taker, 1990).
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1.3 Prior Research on Human Brain Connectivity Estimation Using
the SLRPMMethod. Research on the application of the SLRPMmethod on
brain functional connectivity estimation has been limited, and there is as yet
no comprehensive analysis on the application of the SLRPMmethod for hu-
man brain connectivity estimation. Yatsenko et al. (2015) have applied the
method to infer connectivity in themouse visual cortex. Their simulation re-
sults showed that the SLRPMmethod has the potential to outperform both
the correlation and the SRPMmethods. However, they generated surrogate
data from the same optimization problem that they solved to estimate the
connectivity matrix for the SRPM and SLRPMmethods. A less biased anal-
ysis would generate data independent of themethods and then validate the
methods by estimating the connectivity matrices from these data. This ap-
proach was taken in our simulations for validating the methods. From the
experimental analysis using 3D random-access laser scanning microscopy
of calcium signals in themouse visual cortex, the authors foundmore physi-
ologically interpretable functionally connected brain regions by the SLRPM
method than the correlation and SRPMmethods. Our effort in this letter on
the use of the SLRPMmethod to characterize brain connectivity in humans
from ECoG recordings is the first.

1.4 First Contribution: Validating SLRPM Using Artificial Networks.
In this letter, we generate artificial networks via simulation and demon-
strate the potential of the SLRPM method in recovering network con-
nectivity when only part of the network is observed and the rest of the
network is latent or unobserved. For comparison, we consider the corre-
lation method, the precision matrix method, and the SRPMmethod. This is
our first contribution. To evaluate the performance of the SLRPM method,
we generated synthetic data from amechanical model that consists of a cas-
cade connection of a number of springs and masses. The purpose here is to
demonstrate that the connectivity pattern of the observed spring-mass net-
work can be obtained from the SLRPM associated with the displacements
of the observedmasses. We considered several cases: sparse and dense con-
nections, short-range and long-range connections, and varying the number
of latent variables. The performance of the SLRPMmethod was superior to
those of the other methods.

1.5 SecondContribution: Application of SLRPM for Epileptic Seizure
Analysis. Epilepsy is a neurological disorder characterized by the sudden
occurrence of unprovoked seizures, affecting more than 50 million people
worldwide. There is extensive evidence of significantly altered brain con-
nectivity during epilepsy, especially during seizure periods, in the human
brain (Diessen, Diederen, Braun, Jansen, & Stam, 2013; Kramer & Cash,
2012; Stam, 2014). However, research on the characterization of human
brain functional connectivity during epileptic seizures has predominantly
been limited to the use of the correlation method.
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Vega-Zelaya, Pastor, de Sola, and Ortega (2015) estimated brain func-
tional connectivity during partial seizures from foramen ovale electrode
(FOE) and electroencephalogram (EEG) recordings in 22 temporal lobe
epilepsy (TLE) patients using the correlation method. Brain network con-
nectivity was characterized using the average clustering coefficient (ACC)
and the modularity index (MI). The ACC increased and the MI decreased
after seizure onset. Kramer et al. (2010) analyzed brain functional connec-
tivity in 48 seizures from ECoG recordings in 11 epilepsy patients using the
correlationmethod. They found that theACC increased after the seizure on-
set. A research study by Ponten, Bartolomei, and Stam (2007) characterized,
via the correlation method, the functional connectivity from EEG record-
ings in seven patients suffering from mesial TLE (MTLE) and reported an
increase in ACC after seizure onset. In another study, Schindler, Bialonski,
Horstmann, Elger, and Lehnertz (2008) carried out an analysis of brain ac-
tivity from EEG recordings in 100 epileptic seizures from 60 patients us-
ing the correlation method. They characterized functional connectivity by
ACC and found that it increased after seizure onset. Burns et al. (2014) used
another measure to characterize brain functional connectivity in terms of
eigenvector centrality (EC), from ECoG recordings in 12 patients before and
after seizure onset via the correlation method. They found that brain func-
tional connectivity significantly changed before and after seizure onset, and
they successfully localized the seizure onset zones by analyzing this change
in connectivity (EC) of the ECoG electrodes.

These results of the human brain functional connectivity during epilep-
tic seizures measured using the correlation method might be flawed since
existing brain imaging technologies cannot simultaneously record from the
entire human brain, and brain regions that are observed can receive com-
mon inputs from latent or unobserved brain regions. Furthermore, there
can be dopaminergic, norepinephrine, or cholinergic fiber projections to
the cortex (Attwell & Iadecola, 2002; Giorge, Pizzanelli, Biagioni, Murri,
& Fornia, 2004; Krimer, Muly, Williams, & Goldman-Rakic, 1998; Lado &
Moshe, 2008; Sato & Sato, 1992), and these neuromodulatory projections
serve as common latent inputs to the cortex and induce spurious correla-
tions among the EEG or ECoG electrodes. But the SLRPM method calcu-
lates the precision matrix of the conditional statistics of the observed brain
regions given the latent brain regions, and this helps to remove the influ-
ence of commonobserved and latent inputs on the EEGor ECoG recordings.
In this way, we may be able to find more accurate brain connectivity from
the recordings, which will help us analyze brain activity during epileptic
seizures.

In our second contribution, we demonstrate the application of the
SLRPM method to estimate brain connectivity during epileptic seizures
fromhumanECoG recordings. These recordings are analyzedusing SLRPM
and Louvain method for community detection (LMCD) (Newman, 2006),
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Figure 1: The spring-mass model. The black dots denote continuation of
springs and masses.

and brain connectivity has been quantified using modularity index (MI),
clustering coefficient (CC), and eigenvector centrality (EC).

1.6 Organization of the Letter. In section 2, we test our methods using
the spring-mass model and demonstrate the superior ability of the SLRPM
method for recovering the connectivity of the spring-mass network when
part of the network is unobserved. In section 3, we demonstrate the applica-
tion of the SLRPMmethod for estimating brain connectivity during seizures
from human ECoG recordings. We draw conclusions in section 4.

2 The Spring-Mass Model

Consider the spring-mass model shown in Figure 1. We assume that we
can measure the displacements of the masses in the model. Also assume
there are 200 equal masses m connected in cascade via springs, that is, the
ith mass is connected to its neighbors i− 1 and i+ 1 via springs. First, con-
sider each spring to have a restoring force characteristic (RFC) of the form
kx, where k is the spring constant and x is the amount bywhich the spring is
displaced from its relaxed position. Note that the RFC is linear in this case.
The leftmost and the rightmost springs are connected to a rigidwall. For our
simulations (hereafter, all units are in mks), we use m = 0.1 and k = 1. We
assume that this spring-mass model is subject to thermal perturbation. In
addition, we assume that each mass is subject to external force, and we
model this external force as a white noise process with variance σ 2. For
our simulation, we use σ 2 = 0.000025. We denote the displacements of
the masses as x1, x2, . . . , x200 and the external forces associated with each
of them as w1,w2, . . . , w200, respectively. Using Newton’s second law of
motion and Hooke’s law, we can write the displacement equations of the
masses as

mẍ1 = −kx1 + k(x2 − x1) + w1

mẍ2 = −k(x2 − x1) + k(x3 − x2) + w2

...

mẍ200 = −k(x200 − x199) − kx200 + w200. (2.1)
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In matrix-vector form, the above set of equations can be written as

m

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẍ1
ẍ2
ẍ3
ẍ4
...

ẍ200

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= k

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 1 0 0 · · · 0

1 −2 1 0 · · · 0

0 1 −2 1 · · · 0

0 0 1 −2 · · · 0
...

...
...

...
. . .

...

0 0 0 · · · 1 −2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
x4
...

x200

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1

w2

w3

w4
...

w200

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(2.2)

where x1, x2, . . . , x200 measure the displacements relative to the equilibrium
positioning.

In compact form, equation 2.2 can be represented as

mẍ = kCx + w, (2.3)

where w is the white noise vector and C is the connectivity (or ground-
truth) matrix of the entire spring-mass network. Using a second-order ap-
proximation of the double derivative on the left-hand side in equation 2.3,
we have

m
[
x(t + h) − 2x(t) + x(t − h)

h2

]
= kCx(t) + w(t), (2.4)

where h is the step size and t denotes the time instant. We use a random
initialization of x with variance σ 2

x = 0.000001. We then solve equation 2.4
repeatedly to generateN samples of the displacement vector x correspond-
ing to N consecutive time points. For our simulation, we choose h = 0.0007
andN = 50,000.We can use theseN samples to form the sample covariance
matrix of the entire spring-mass network.

However, we assume that we can observe only part of the entire net-
work because some of the displacements are not available formeasurement.
Hence, the only available data are the sample covariance matrix of the dis-
placements, which are available formeasurement. From this sample covari-
ance matrix, we wish to recover the connectivity of the observable masses
using the correlation method, the precision matrix (PM) method, the SRPM
method, and the SLRPMmethod.We study the recovery performance of the
methods by varying the number of observable variables p (hence, varying
the number of latent variables h). The values of p are taken to be 60, 100,
and 150 for this example. This example is shown in Figure 2. The connec-
tions in the ground-truthmatrix of the observed network are shown in black
dots. We choose theM largest elements (in absolute value) in the estimated
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Figure 2: Results of the estimation methods for the spring-mass model of 200
masses when only part of the network is observable and a linear RFC is consid-
ered. Connections in the observed network (ground-truth matrix) are shown in
black dots. For themethods, correct identification of a connection is shownwith
black dots and incorrect identification of a connection with red dots. (a) p = 60.
(b) p = 100. (c) p = 150.
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connection matrix, excluding the diagonal, from each method, where M is
the number of connections in the ground-truth matrix, excluding the diag-
onal, and check whether the estimated connection corresponds to the con-
nection in the ground-truth matrix. For each method, we show a correctly
identified connection in black dots and an incorrectly identified connection
in red dots in Figure 2. The error percentage for a particular method is the
percentage of incorrectly identified connections expressed as a fraction of
the total number of connections in the ground-truth matrix.

Observe that the error percentage thatwe report here is equal to the num-
ber of false positives, which is also equal to the number of false negatives in
this case since we only selectM largest elements. For example, if we assume
that there are five ground-truth connections and the number of hits (true
positives) by a method is three, then the number of false negatives is two
since the number of misses is two and the number of false positives is also
two since those two false connections will appear elsewhere. The value of
the regularization parameter λ for the SRPM method and the values of the
regularization parameters α and β for the SLRPM method are also shown
in Figure 2. These values were fine-tuned for this example. From this figure,
we observe that the PM method, which directly inverts the sample covari-
ance matrix, results in extremely poor performance for the three cases con-
sidered. The SLRPM method has comparable or better performance than
the other methods for the three cases considered in Figure 2.

Next, we consider an examplewith a nonlinear RFC of the form kx+ γ x3.
Nonlinear RFC is considered since brain dynamics during seizures are well
known to be highly nonlinear (see Stam, 2005). We vary the number of ob-
servable masses and keep the other parameters the same as in the previous
example. The value of γ is set to one for our simulations. The results of the
application of different methods for this example are shown in Figure 3.
Note that the performance of the SLRPMmethod is comparable to or better
than that of the other methods for a varying number of observed variables.
We also have considered a nonlinear RFC of the form kx+ γ x9, and in that
case too, the SLRPMmethod outperformed the correlation and SRPMmeth-
ods (results not shown here). In Figure 4, we have plotted the performance
of the methods in terms of number of samples N for p = 100. We note that
the performances of the correlation, SRPM, and SLRPM methods do not
improve with an increase inN, with the SLRPMmethod outperforming the
correlation and SRPM methods. The correlation and SRPM methods also
have comparable performance. It is worth noting that although the SLRPM
method performs much better and the PM method is the worst when the
sample size is small, the PMmethod is able to outperformall the othermeth-
ods when we increase the sample size.

In the previous two examples, the networks were sparse (all masses
were connected only to their immediate neighbors). For an epileptic hu-
man brain, this sparseness assumption might not remain valid (Steriade
et al., 1993). Hence, we now consider relatively denser networks and
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Figure 3: Results of the estimation methods for the spring-mass model of 200
masses when only part of the network is observable and a nonlinear RFC is con-
sidered. Connections in the observed network (ground-truthmatrix) are shown
in black dots. For the methods, correct identification of a connection is shown
in black dots and incorrect identification of a connection is shown in red dots.
(a) p = 60. (b) p = 100. (c) p = 150.
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Figure 4: Plot of error percentage of the estimation methods versusN with p =
100 and when a nonlinear RFC is considered.

evaluate the performance of the methods. In the next two examples, we
consider the spring-mass network to have long-range connections. First, as-
sume that this range is 40n, where n is a natural number (i.e., the ith mass);
besides being connected to its immediate neighbors i+ 1 and i− 1, it is also
now connected to masses with indices i+ 40, i− 40, i+ 80, i− 80, and so
on. We also assume a linear RFC for this example. Using Newton’s second
law of motion andHooke’s law, we can easily write the displacement equa-
tions of the masses for this modified spring-mass network as done for the
two previous examples in equation 2.1. We can then iteratively solve these
equations to generate N samples of the displacement vector. We assume
N = 100,000 samples for this example. All other parameters are the same
as before. Like the previous examples, the values of observable masses p
are taken to be 60, 100, and 150. The performance of the methods for this
example is shown in Figure 5. The values of the regularization parameters
are also indicated in that figure. We note that the SLRPMmethod is able to
outperform the other methods. It is also worth noting that the performance
of the SRPM method is comparable to that of the SLRPM method.

Next, assume that the range is 20n (i.e., the ith mass). Besides being con-
nected to its immediate neighbors i+ 1 and i− 1, it is now also connected
to masses with indices i+ 20, i− 20, i+ 40, i− 40, and so on. We vary the
number of observable masses and keep the other parameters the same as in
the previous example. The performance of different methods for this exam-
ple is shown in Figure 6. The SLRPMmethod is able to outperform the other
methods. Furthermore, in Figure 7, we have plotted the performance of the
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Figure 5: Results of the estimation methods for the spring-mass model of 200
masses when only part of the network is observable and there are long-range
connections with range 40n. Connections in the observed network (ground-
truth matrix) are shown in black dots. For the methods, correct identification
of a connection is shown in black dots and incorrect identification of a connec-
tion in red dots. (a) p = 60. (b) p = 100. (c) p = 150.



1286 A. Das et al.

Figure 6: Results of the estimation methods for the spring-mass model of 200
masses when only part of the network is observable and there are long-range
connections with range 20n. Connections in the observed network (ground-
truth matrix) are shown in black dots. For the methods, correct identification
of a connection is shown in black dots and incorrect identification of a connec-
tion in red dots. (a) p = 60. (b) p = 100. (c) p = 150.
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Figure 7: Plot of error percentages of the estimation methods versus N with
p = 100 and a densely connected networkwith long-range connections of range
20n.

methods in terms of number of samples N for p = 100. Note that the PM
method is unable to estimate the observable network, resulting in large er-
rors. Most of these errors are numerical, since the sample covariance matrix
is a poor estimator of the eigenvalues of the covariance matrix. The SLRPM
method performs better than the correlation and SRPM methods. It is also
worth noting that the correlation and SRPM methods have comparable
performance.

In the next example, we still consider relatively dense connections, but
we assume the spring-mass network to have short-range connections. We
assume a neighborhood of 3 (i.e., the ith mass), is now connected to masses
with indices i+ 1, i− 1, i+ 2, i− 2, i+ 3, and i− 3. We also assume N =
100,000 samples and a linear RFC. As before, the values of observable
masses p are taken to be 60, 100, and 150. The performance of the meth-
ods for this example is shown in Figure 8. The values of the regulariza-
tion parameters are also mentioned in that figure. We note that the SLRPM
method outperforms the correlation and PMmethods and has performance
comparable to that of the SRPM method. We have also plotted the per-
formance of the methods in terms of number of samples N for p = 100 in
Figure 9. The PM method is not able to have any useful estimate of the ob-
served network due to numerical errors. The SLRPM method outperforms
the correlation method and has performance comparable to the SRPM
method.
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Figure 8: Results of the estimation methods for the spring-mass model of 200
masses when only part of the network is observable and there are short-range
connections with a neighborhood of 3. Connections in the observed network
(ground-truth matrix) are shown in black dots. For the methods, correct iden-
tification of a connection is shown in black dots and incorrect identification in
red dots. (a) p = 60. (b) p = 100. (c) p = 150.
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Figure 9: Plot of error percentage of the estimation methods versus N with
p = 100 and densely connected network with short-range connections of neigh-
borhood 3.

Remark 1. Although for each case, we have considered only one random
subset of network to be observable, considering different random subsets
of network (but fixing all the parameters) to be observable does not change
the trends of the results reported here1 and the SLRPM method is able to
outperform the other methods for different random subsets of observed
variables.

Remark 2. The performance (in terms of error percentage) of each method
for network recovery in the spring-mass model does not change under
different types of noise distributions. We have tested the performance of
these methods under gaussian, Poisson, and uniform distributions, and
each method has similar performance under these different noise distribu-
tions.

Remark 3. The performance (in terms of error percentage) of each method
for network recovery in the spring-mass model does not change for a
change in signal-to-noise ratio up to 30 dB.

1
Figures 2, 3, 5, 6, and 8 also appear in Das (2018). The figures in this paper and the

figures in Das (2018) were generated in two different versions of Matlab, and they are
slightly different from each other due to numerical precision (floating-point arithmetic)
issues. But the trends of the results are the same in both cases.
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Table 1: Patient Details.

Patient Age Sex (Male (M)/Female (F))

1 46 F
2 55 F
3 29 M
4 45 F
5 25 M

Remarks 2 and 3 are not surprising. Note that in the spring-mass model,
we model the noise as an external force. So no matter how forcefully (noise
variance) or in what way (noise distribution) we wobble the spring-mass
system, the connectivity pattern will not change. Noise is not responsible
for the connectivity pattern, and the connectivity patterns estimated by the
different methods shown here are due to the methods themselves.

3 Epileptic Seizure Analysis from Human ECoG Recordings

3.1 ECoG Data Acquisition and Protocol. Continuous ECoG record-
ings from five patients (see Table 1 for details) with long-standing
pharmaco-resistant complex partial epileptic seizures were analyzed.
Recordings were performed using a standard clinical recording system
(XLTEK, Natus Medical, San Carlos, CA) with a 500 Hz sampling rate. The
reference channel was a strip of electrodes placed outside the dura and fac-
ing the skull at a region remote from the other grid and strip electrodes.
Subdural electrode arrays were placed to confirm the hypothesized seizure
focus and locate epileptogenic tissue in relation to essential cortex, thus di-
recting surgical treatment. The decision to implant, the electrode targets,
and the duration of implantation were made entirely on clinical grounds,
with no input from this research study. All data acquisition was performed
under protocols monitored by the Institutional Review Board of the Mas-
sachusetts General Hospital according to National Institutes of Health
guidelines.

3.2 Preprocessing and Referencing. ECoG recordings were first low-
pass-filtered at 125 Hz using a sixth-order Butterworth filter to remove
high-frequency artifacts. Line frequencies 60 Hz and 120 Hz were then
notch-filtered using a fourth-order Butterworth filter. Next, to reduce the
signals from the reference electrode, at each time point, the average sig-
nal of all electrodes was subtracted from each electrode (Cimenser et al.,
2011; Kramer et al., 2010; Nunez & Srinivasan, 2006), a process also known
as common average referencing (CAR). Finally, recordings were z-scored
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(mean-variance normalization) for each channel (Varsavsky, Mareels, &
Cook, 2010).

After preprocessing the ECoG data, we analyzed them using the corre-
lation, SRPM, and SLRPM methods and used MI, CC, and EC to quantify
brain connectivity. These three measures, widely used for characterizing
activity in brain imaging studies, are directly applied on the estimated con-
nectivitymatrix from themethods considered. In order to calculate themea-
sures, we used the brain connectivity toolbox (BCT; Sporns, 2010).

3.3 Description of Brain Connectivity Measures

3.3.1 Modularity Index (MI). For clustering of brain regions, we use MI
(Blondel et al., 2008; Brandes et al., 2008; Newman & Girvan, 2004; New-
man, 2006; Reichardt & Bornholdt, 2006; Ronhovde & Nussinov, 2009;
Sporns, 2010; Sun et al., 2009). MI is defined as

Q = 1
2M

∑
i, j

[
Bi j −

sis j
2M

]
δ(σi, σ j ), (3.1)

where Bi j denotes the strength of connectivity (obtained from the methods)
between brain regions i and j, si = ∑

j Bi j denotes the sum of connectivity
strengths between brain region i and the rest of the brain regions, σi denotes
the cluster to which brain region i belongsM = 1

2

∑
i j Bi j, and δ(σi, σ j ) is 1 if

σi = σ j and 0 otherwise. Note that MI measures the fraction of the strengths
of the connectivities belonging to the same cluster minus the probability of
the strengths of randomconnectivities belonging to the same cluster.Hence,
in order to have positive MI, the strengths of the connectivities belonging
to the same cluster have to be better than random. Extraction of brain net-
works is based on MI optimization, and we use the Louvain method for
community detection (LMCD) (Blondel et al., 2008; Brandes et al., 2008;
Newman & Girvan, 2004; Newman, 2006; Reichardt & Bornholdt, 2006;
Ronhovde &Nussinov, 2009; Sporns, 2010; Sun et al., 2009), which is a fully
automatic method, for this optimization. In other words, LMCDmaximizes
the strengths of connectivities within clusters and minimizes the strengths
of connectivities between clusters. Clustering of brain regions based on MI
optimization is a widely used method in human brain imaging data analy-
sis (Bassett et al., 2010; 2011; Bruno et al., 2017; Cole, Bassett, Power, Braver,
& Petersen, 2014;Meunier, Lambiotte, & Bullmore, 2010; Rubinov& Sporns,
2010; 2011; Sporns, 2011; Zuo et al., 2012).

3.3.2 Clustering Coefficient (CC). The CC (Onnela, Saramaki, Kertesz, &
Kaski, 2005; Saramaki, Kivela, Onnela, Kaski, & Kertesz, 2007) of a brain
region in a network quantifies how well its neighboring brain regions are
connected. CC Ci of the ith brain region is defined as
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Ci = 1
ki(ki − 1)

∑
j,h

(Bi jB jhBhi)1/3 (3.2)

where ki is the number of neighboring brain regions of the ith brain region
and Bi j is the strength of connectivity (obtained from themethods) between
brain regions i and j. The average CC (ACC) C of an entire brain network
can be defined as

C = 1
M

∑
i

Ci, (3.3)

whereM is the total number of observed brain regions. CC is also a widely
used measure in human brain imaging data analysis (Bruno et al., 2017;
Kramer et al., 2010; Ponten et al., 2007; Rubinov & Sporns, 2010; Schindler
et al., 2008; Vega-Zelaya et al., 2015; Wang, Ghumare, Vandenberghe, &
Dupont, 2017).

3.3.3 Eigenvector Centrality (EC). The EC (Newman, 2010) is a measure
of the influence or importance of a brain region in the entire brain network.
This is based on the concept that a brain region more strongly connected
to high influential brain regions will have relatively higher EC. Mathemat-
ically, the relative EC ei of the ith brain region can be written as

ei = 1
κ

∑
j

Bi je j, (3.4)

where Bi j is the strength of connectivity (obtained from the methods) be-
tween brain regions i and j and e j is the relative EC of the jth brain region.
Inmatrix-vector notation, the above set of equations can be compactly writ-
ten as an eigenvector equation,

Be = κe, (3.5)

where B is the estimated connectivity matrix from the methods and e is
its eigenvector, which contains the relative influences of the brain regions.
Hence, the relative ECs can be found by solving the eigenvector equation in
equation 3.5. But note that equation 3.5 has multiple solutions. The relative
ECs are always assumed to be nonnegative. The following two theorems
help us find EC from equation 3.5. These theorems are valid for an esti-
mated connectivity matrix B that is real, symmetric, and with all elements
nonnegative (we take the absolute values of the elements of the estimated
connectivity matrix to make them nonnegative).
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Theorem 1. The largest positive eigenvalue κ1 ofB is always greater than or equal
to the magnitude of its most negative eigenvalue.

Proof. See Newman (2010, p. 346). �
Theorem 2. There exists an eigenvector with eigenvalue κ1 all of whose elements
are nonnegative.

Proof. This follows from theorem 1. See Newman (2010, p. 347), for
details. �

Since there can be atmost one eigenvectorwith all elements nonnegative,
the eigenvector corresponding to the largest positive eigenvalue contains
the relative ECs of the brain regions. The optimization problem in equa-
tion 3.5 can be solved by using the power method (Newman, 2010). The
EC measure has been previously used by researchers to quantify connec-
tivity in human brain imaging studies (Burns et al., 2014; Joyce, Laurienti,
Burdette, & Hayasaka, 2010; Lohmann et al., 2010; Zuo et al., 2012).

3.4 Seizure Analysis. After preprocessing of the ECoG recordings, the
methods are applied on 4 s nonoverlapping time windows, and brain con-
nectivity is then quantified using the described measures. The length of the
time series analyzed for each seizure was 25 minutes, with a 10 minute pre-
ictal time segment. Note that although it is difficult to characterize the preic-
tal period of seizures, which varies from seizure to seizure within a patient
and in seizures from different patients, we define the 10 minute preseizure
period as our preictal period for all seizures in all patients.

The regularization parameter λ in the SRPMmethod was set to 0.02, and
the regularization parameters α and β in the SLRPM method were set to
0.02 and 0.2, respectively, for all seizures and all patients. The SRPM and
SLRPM methods were found to be robust to changes in the regularization
parameters, and small changes in the values of these did not change the
results and conclusions of the letter.

We first describe seizures from patient 1 in detail. Electrode locations are
shown in Figure 10. As shown, there were two grids: one over the anterior
temporal and fronto-parietal region and the other placed over the posterior
temporal-parietal region. Three stripswere placed in the frontopolar region,
the subfrontal region, and the subtemporal region. Depth electrodes were
inserted in the inferior frontal and the anterior and posterior temporal re-
gions. We analyzed five clinical seizures from this patient.

The MI plots for the three methods for seizure 1 are shown in Figure 11.
This seizure lasted for approximately 90 seconds (determined by the clin-
ician). Observe that the MI estimated by the SRPM and SLRPM methods
during the seizure are relatively lower than the preictal and postictal MI
estimated by the samemethods, respectively. Furthermore, the preictal and
postictal MI in the SLRPM method are relatively higher than those in the
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Figure 10: Electrode locations in patient 1.

Figure 11: MI plots for the three methods for seizure 1 in patient 1. The green
line denotes the seizure onset time.

SRPMmethod, respectively, and bothmethods have higherMI than the cor-
relation method. Since the SLRPM method estimates brain connectivity by
considering both the common observable and latent inputs, it removes con-
siderable between-module connectivity, and the estimated brain network
by this method is highly modular. Also note that theMI shown in the corre-
lation method slightly increases during the seizure and then decreases for
the first few seconds of the postictal period. These dynamics estimated by
the three methods can be more clearly interpreted if we visualize the puta-
tive latent inputs to the electrodes from which brain activity was recorded.
In order to have a measure for the latent inputs, we calculate the sum of the
eigenvalues of the low-rank matrix estimated by the SLRPM method. This
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Figure 12: Plot of the latent inputs estimated by the SLRPMmethod for seizure
1 in patient 1. The green line denotes the seizure onset time.

plot is shown in Figure 12. We see that the putative latent inputs are rela-
tively low in the ictal period than the preictal period but are relatively high
in the postictal period. For the first few seconds of the postictal period, these
latent inputs start increasing andmake the observed brain regionsmore cor-
related and consistent with a decrease in MI in the correlation method for
this period. Also, since the effect of the latent inputs is relatively higher in
the preictal and postictal periods than the ictal period, it becomes essen-
tial to estimate the precision matrix of the conditional statistics in order to
remove the influence of these inputs on the recorded activity. SRPM and
correlation methods have lower MI in preictal and postictal periods than
the SLRPM method since they cannot model the latent inputs and might
produce erroneous connections among the brain regions, resulting in an er-
roneous estimate of MI.

The low MI values in the SRPM and SLRPM methods can be explained
by the CC and EC plots for the individual electrodes, which are shown in
Figures 13 and 14, respectively. Note from the CC and EC plots of the SRPM
and SLRPM methods that the brain regions are uniformly active in the ic-
tal period, in contrast to the preictal and postictal periods. This relatively
more uniform activity explains the lower MI shown in these two methods
since during the ictal period, the entire brain network behaves as a single
module. For both CC and EC measures, the SLRPM method shows rela-
tively sparser activity than the SRPM and correlation methods during the
preictal and postictal periods, which is again a consequence of the ability of
the SLRPMmethod to model the latent inputs. The estimates by the SRPM
and correlation methods in these periods might be erroneous due to the
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Figure 13: CC plots for the three methods for seizure 1 in patient 1. The green
line denotes the seizure onset time.
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Figure 14: EC plots for the three methods for seizure 1 in patient 1. The green
line denotes the seizure onset time.
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Figure 15: MI plots for the SLRPMmethod for seizures 2, 3, 4, and 5 (shown in
panels a, b, c, and d, respectively) in patient 1. The green lines in all plots denote
the seizure onset time.

inability of these two methods to capture the effect of the latent inputs on
the observed brain regions. For the first few seconds of the postictal pe-
riod, the EC measure in the correlation method shows that the electrodes
are relatively highly active. This phenomenon is also observed in the CC
measure of the correlation method to some extent, in which we see that
a relatively large number of electrodes are uniformly active. These prob-
ably are erroneous estimates due to the presence of the common inputs,
as explained before. In contrast, examining the CC and EC measures in the
SLRPMmethod during this period, we see that relatively few electrodes are
active. All of these results demonstrate the superior ability of the SLRPM
method to capture brain dynamics that might be the closest to the ground
truth.

Plots ofMI, CC, EC, and latent inputsmeasures from the SLRPMmethod
for the other four seizures are shown in Figures 15, 16, 17, and 18, respec-
tively. Each of these seizures lasted approximately 90 seconds. We note that
ictal dynamics for all these seizures for each measure are very similar to
each other and seizure 1 and can be explained as before.

Due to the consistency of dynamics of all five seizures in the SLRPM
method, wewere able towrite a seizure detection algorithm for this patient.
For seizure detection, we considered the latent inputs measure. Overall,
we found this measure to be the most sensitive to seizures from the analy-
sis of all seizures from all patients and hence used it for seizure detection.
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Figure 16: CC plots for the SLRPMmethod for seizures 2, 3, 4, and 5 (shown in
panels a, b, c, and d, respectively) in patient 1. The green lines in all plots denote
the seizure onset time.

Figure 17: EC plots for the SLRPMmethod for seizures 2, 3, 4, and 5 (shown in
panels a, b, c, and d, respectively) in patient 1. The green lines in all plots denote
the seizure onset time.
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Figure 18: Plots of the latent inputs estimated by the SLRPM method for
seizures 2, 3, 4, and 5 (shown in panels a, b, c, and d, respectively) in patient
1. The green lines in all plots denote the seizure onset time.

We used both threshold criteria, when the latent inputs become lower than
a specified threshold, and duration criteria, when the duration of the la-
tent inputs lower than the specified threshold is higher than some specified
lower limit and lower than some specified higher limit. We declare that a
seizure is detected when the latent inputs satisfy both of these criteria. Us-
ing these criteria, we were able to detect all five seizures with zero false
positives.

Dynamics of seizures in patients 2, 3, 4, and 5 were very similar to that in
patient 1 (see the appendix for detailed analysis of these patients’ seizures).
We also used the threshold and duration criteria on the latent inputs mea-
sure for seizure detection in these patients (the threshold and duration val-
ues for different patients were different from one another and also from
those selected for patient 1) and were able to detect 5 out of 5 seizures with
zero false positives in patient 2, 7 out of 7 seizures with 2 false positives in
patient 3, 3 out of 3 seizures with zero false positives in patient 4, and 52
out of 54 seizures with 2 false positives in patient 5. Moreover, for patient
5, 6 seizures were not marked clinically, but showed clear signs of ictal dy-
namics in the latent inputs plots (and in plots of other measures not shown
here) in Figure 19 (2 seizures in Figure 19a and one each in Figures 19b to
19e). This shows the potential of the SLRPMmethod to detect seizures that
the clinician possibly missed.
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Figure 19: Plots of the latent inputs estimated by the SLRPM method for five
seizures in patient 5 in which ictal dynamics is also observed at time instants
(two in panel a and one each in panels b to e), which were not classified by the
clinician as seizure onset times. The green lines in all plots denote the seizure
onset time.

3.5 Effect of Preprocessing. Here, we study the effect of two of themost
important preprocessing steps that we applied on our ECoG recordings:
CAR and z-scoring.

3.5.1 Effect of CAR. In our CAR, we subtracted the average signal of all
electrodes from each electrode at each time point. However, since the dy-
namics of the seizure onset electrodes might be different from those of the
nononset electrodes, we tested the SLRPMmethod by considering only the
nononset electrodes for CAR. We also tested SLRPM by considering a ran-
dom subset of 40 nononset electrodes for CAR. We considered the EC mea-
sure applied on seizure 1 in patient 1 as an example to test these two CAR
procedures, the results are shown in Figures 20a and 20b, respectively. For
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Figure 20: Analysis of effect of CAR on SLRPMmethod for seizure 1 in patient
1. The green lines in all plots denote the seizure onset time. (a) Nononset elec-
trodes are used for CAR. (b) A random subset of 40 nononset electrodes is used
for CAR. (c) All electrodes are used for CAR.
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comparison, the EC plot of SLRPM method in Figure 13 is reproduced in
Figure 20c in which we use all electrodes for CAR. We note that both of
these CAR approaches have minimal effect on the preictal, ictal, and pos-
tictal dynamics, and the dynamics look similar to that in Figure 20c.

3.5.2 Effect of normalization. For our analysis, we z-scored each channel
for the entire 25minute time segment to have a relatively less biased estima-
tion of mean and standard deviation. However, some researchers also use
z-scoring in each time window rather than the entire data (Varsavsky et al.,
2010). To test the effect of normalization in each time window on SLRPM,
we considered the ECmeasure applied on seizure 1 in patient 1 as an exam-
ple. Figure 21a shows the result of this normalization procedure. For com-
parison, the EC plot of SLRPMmethod in Figure 13 is reproduced in Figure
21b in which normalization was applied for the entire time segment. We
note that the preictal dynamics (also see Figure 22 for the plot of only the
preictal period of Figure 21a) in Figure 21a is significantly different from
that in Figure 21b and the ictal and postictal dynamics are relatively more
similar for these two normalization procedures.Moreover, we have applied
z-scoring only on the 10minute preictal recording; the result is shown in Fig-
ure 21c. Note that although the values of the ECmeasures for the electrodes
are different for the preictal period in Figures 21b and 21c, electrodes that
were relatively more active than others can be seen in both. However, both
of these are markedly different from the EC measures for the electrodes in
the preictal period in Figure 21a. This shows that two different normaliza-
tion methods can produce different results, and care needs to be taken in
interpreting the results.

4 Discussion

Analyzing the results from the measures applied on the SLRPM method,
we see that ictal dynamics is relatively more consistent than the preictal dy-
namics across seizures within a patient. Researchers (Kramer et al., 2010;
Ponten et al., 2007; Schindler et al., 2008; Vega-Zelaya et al., 2015) have pre-
viously reported an increase in ACC after seizure onset. However, in our
analysis, we do not consider ACC since we found that in the preictal pe-
riod, some electrodes are relatively more active than others, and averaging
CC across electrodes in this period and comparing the result to that in the ic-
tal period obscures the dynamics for individual electrodes. We also observe
a relative decrease inMI after seizure onset in patients 1 to 4, and this result
is consistent with findings from Vega-Zelaya et al. (2015). Similar to the au-
thors in Burns et al. (2014), we also observed change in brain connectivity
from the EC measure. However, we were not able to locate the seizure on-
set zones from the ECmeasure applied on the SLRPMmethod. The SLRPM
method estimates the conditional statistics of the observed brain regions
given the latent brain regions hence removing the effect of the latent inputs
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Figure 21: Analysis of the effect of normalization on SLRPMmethod for seizure
1 in patient 1. The green lines in panels a and b denote the seizure onset time.
(a) Window-wise z-scoring. (b) Z-scoring the entire time segment. (c) Z-scoring
only the preictal time segment.
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Figure 22: Shown here is the preictal period of Figure 21a for better visualiza-
tion of the active electrodes.

on the connectivity of the measured brain regions. We found the estimated
latent inputs by the SLRPM method to be the most sensitive measure to
the seizures in the ECoG recordings from the five patients we analyzed,
and using this measure, we were able to detect seizures with very high ac-
curacy (72 out of 74 seizures) and very low false positives (4). The latent
inputs measure performed better than both correlation and SRPMmethods
for seizure detection (for correlation and SRPM methods, we used the MI
measure for seizure detection). Acomprehensive comparison of our seizure
detection algorithmwith other seizure detectionmethods Jerger et al., 2001;
e.g., frequency-based methods) will be explored in a future paper to place
our seizure detection method in the context of other algorithms. There is
also evidence of decreased cortical-subcortical interaction during epileptic
seizures (Blumenfeld et al., 2012), which explains the relatively decreased
latent inputs during the ictal period estimated by the SLRPMmethod. There
was a noticeable offset between the clinical onset times (green lines) and
the onset of the uniform region of CC in Figure 25 (best seen in panel c).
A similar offset in MI is apparent in Figure 24c and in the putative latent
input in Figure 27c. This suggests that these measures may be useful for
automating the detections of seizure onsets. Furthermore, we also observed
variability in preictal activity across seizures in each patient from our mea-
sures. Quantification of this heterogeneity and detailed interpretation of
preseizure brain activity for patients are published elsewhere (Das, 2018;
Das, Cash, & Sejnowski, 2018).

An alternative way of estimating the internal states or latent inputs
of brain activity from a few ECoG electrode recordings is using the



1306 A. Das et al.

observability framework from control systems theory (Liu, Slotine, &
Barabasi, 2013; Meyer-Base et al., 2017; Whalen, Brennan, Sauer, & Schiff,
2015). If the complete internal state dynamics of the brain can be recon-
structed from the available ECoG recordings, then we will have an observ-
able brain (Aguirre, Portes, & Letellier, 2017). Controlling the observable
brain regions responsible for seizure initiation will be important to gain
significant insights into its evolution, thus enabling us to find better treat-
ments of epilepsy. However, this problem is particularly confounded by the
highly nonlinear, nonstationary, and complex nature of the humanbrain, for
which the ground-truth topology is also unknown.Moreover, the nonlinear,
long-range connections considered in the spring-mass network in this letter
are already too complicated to carry out a theoretical analysis from a con-
trollability and observability point of view. Nevertheless, we have carried
out an empirical analysis of such networks as considered previously (Huth
et al., 2016), and this has helped us validate the performance of the meth-
ods considered in this letter and the effect of internal states or latent inputs
on the inferred connectivity by such methods. However, epileptic seizure
generation and propagation are still poorly understood, and clinically rele-
vant signal processing methods are scarce. Combining graph theory–based
methodswith the theory of observability and controllability of human brain
networks seems to be the future of tackling such a highly complex problem
(Whalen et al., 2015). This will be crucial in revealing the underlying neural
circuits in epileptic seizures and more broadly will have significant impact
on our understanding of the human brain in pathology.

Appendix

A.1 Medication Information of Patients. Medication information for
patient 1 is shown in Table 2. Seizure 1 corresponds to day 7, seizures 2 and
3 correspond to day 8, and seizures 4 and 5 correspond to day 9.Medication
information for patient 2 is shown in Table 3. Seizures 1 and 2 correspond
to day 2, seizure 3 corresponds to day 3, and seizures 4 and 5 correspond
to day 8. Medication information for patient 3 is shown in Table 4. Seizure
1 corresponds to day 2; seizures 2, 3, 4, and 5 correspond to day 7; and
seizures 6 and 7 correspond to day 8. Medication information for patient 4
was not available. Patient 5’s hospital medications included phenobarbital,
carbamazepine, ativan, and vimpat.

A.2 Seizure Characteristics in Patient 2. Electrode locations are shown
in Figure 23. As shown, depth electrodes were inserted in the right and left
anterior temporal regions, right and left posterior temporal regions, right
and left cingulate regions, and right and left subfrontal regions. We ana-
lyzed five clinical seizures from this patient.

Plots ofMI, CC, EC, and latent inputsmeasures from the SLRPMmethod
for five seizures of this patient are shown in Figures 24, 25, 26, and 27,
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Table 2: Medication Information for Patient 1.

Day Medication

On admission Trileptal 300 tid + 150 mg OD, clonazepam 0.25 mg tds
Day 1 Trileptal 300 bid; clonazepam 0.25 mg tds
Day 2 Trileptal 300 od; clonazepam 0.25 mg tds
Day 3 Clonazepam 0.25 mg tds
Day 4 Clonazepam 0.25 mg bid
Day 5 Clonazepam 0.25 mg od
Day 6–9 No AEDs
Day 10–11 and on discharge Trileptal 300 tid + 150 mg OD, clonazepam 0.25 mg tds

Table 3: Medication Information for Patient 2.

Day Medication

Home doses Levetiracetam 1500–1500, oxcarbazepine 600–600, clonazepam 0.25–0.25
Day 1 Levetiracetam 1500 − 1500, oxcarbazepine 600–600, clonazepam 0.25–0.25
Day 2 Levetiracetam 1500–1500, oxcarbazepine 300–300, clonazepam 0.25–0.25
Day 3 Levetiracetam 1500–1500, oxcarbazepine 300–600, clonazepam 0.25–0.25
Day 4 Levetiracetam 1500–1500, oxcarbazepine 600–600, clonazepam 0.25–0.25
Day 5 Levetiracetam 1500–750, oxcarbazepine 600–300, clonazepam 0.25–0.25
Day 6 Levetiracetam 750–750, oxcarbazepine 300–0, clonazepam stopped
Day 7 Levetiracetam stopped, oxcarbazepine stopped, clonazepam stopped
Day 8 Levetiracetam 750–750, oxcarbazepine stopped, clonazepam stopped
Day 9 Levetiracetam 1500–1500, oxcarbazepine 600–600, clonazepam 0.25–0.25

Table 4: Medication Information for Patient 3.

Day Medication

Home doses Keppra 1500–1500, lamotrigine 200–200, Zonegran 300–300
Day 1 Keppra 1500–1500, lamotrigine 200–200, Zonegran 300–300
Day 2 Keppra 750–750, lamotrigine 100–100, Zonegran 200–200
Day 3 Keppra 375–375, lamotrigine 50–50, Zonegran 100–100
Day 4–8 Off medications

respectively. From the MI plots of these seizures, ictal dynamics is visible,
to varying extent, by the relative lowering of MI for the first few seconds
of seizure onset, and this phenomenon is similar to the ictal dynamics seen
in patient 1. A relatively large number of electrodes are uniformly active
for the first few seconds of seizure onset in each of the CC and EC plots,
which is similar to those observed in patient 1. It is also noteworthy that
the number of preictal active electrodes is relatively sparser in the EC plots
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Figure 23: Electrode locations in patient 2. (a) Left hemisphere. (b) Right hemi-
sphere.

Figure 24: MI plots for the SLRPM method for seizures 1, 2, 3, 4, and 5, shown
in panels a, b, c, d, and e, respectively, in patient 2. Green lines in all plots denote
the seizure onset time.
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Figure 25: CC plots for the SLRPMmethod for seizures 1, 2, 3, 4, and 5, shown
in panels a, b, c, d and e, respectively, in patient 2. Green lines in all plots denote
the seizure onset time.

than those in the corresponding CC plots. We also observe the relative less-
ening of the putative latent inputs, to varying extent, after seizure onset, a
phenomenon also observed in patient 1.

A.3 Seizure Characteristics in Patient 3. Electrode locations are shown
in Figure 28. As shown, depth electrodes were inserted in the right and left
anterior temporal regions, right and left posterior temporal regions, right
and left cingulate regions, right and left subfrontal regions, and right and
left posterior frontal regions. We analyzed seven clinical seizures from this
patient.

Plots ofMI, CC, EC, and latent inputsmeasures from the SLRPMmethod
for seven seizures of this patient are shown in Figures 29, 30, 31, and 32,
respectively. Ictal dynamics is clearly visible from these plots and similar to
that in patients 1 and 2.
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Figure 26: EC plots for the SLRPM method for seizures 1, 2, 3, 4, and 5, shown
in panels a, b, c, d, and e, respectively, in patient 2. Green lines in all plots denote
the seizure onset time.

A.4 Seizure Characteristics in Patient 4. Electrode locations are shown
in Figure 33. As shown, depth electrodes were inserted in the anterior tem-
poral, posterior temporal, subfrontal, cingulate, and parietal regions. We
analyzed three clinical seizures from this patient.

Plots ofMI, CC, EC, and latent inputsmeasures from the SLRPMmethod
for three seizures of this patient are shown in Figures 34, 35, 36, and 37,
respectively. Ictal dynamics is clearly visible from these plots and similar
to that in patients 1, 2, and 3. Large variation in MI and latent inputs plots
is also observed starting from the 700 s mark and lasting for a few seconds
in seizure 3 and seizure 2 to some extent. From all plots for seizure 1, we
also see that the duration of ictal dynamics is relatively large as compared
to those for the other two seizures.
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Figure 27: Plots of the latent inputs estimated by the SLRPM method for
seizures 1, 2, 3, 4, and 5, shown in panels a, b, c, d, and e, respectively, in pa-
tient 2. Green lines in all plots denote the seizure onset time.

Figure 28: Electrode locations in patient 3. (a) Left hemisphere. (b) Right hemi-
sphere.
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Figure 29: MI plots for the SLRPM method for seizures 1, 2, 3, 4, 5, 6, and 7,
shown in panels a, b, c, d, e, f, and g, respectively, in patient 3. Green lines in all
plots denote the seizure onset time.

A.5 Seizure Characteristics in Patient 5. Electrode locations are shown
in Figure 38. As shown, there were two grids, one placed over the pos-
terior inferior frontal, posterior inferior parietal, superior temporal, and
superior posterior temporal regions and the other covered the posterior in-
ferior frontal, inferior parietal, and superior parietal lobe regions. Two strips
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Figure 30: CC plots for the SLRPM method for seizures 1, 2, 3, 4, 5, 6, and 7,
shown in panels a, b, c, d, e, f, and g, respectively, in patient 3. Green lines in all
plots denote the seizure onset time.

were placed over the subtemporal and parietal regions. There were also
depth electrodes placed in the anterior temporal lobe, the posterior tempo-
ral lobe, the superior parietal lobe, and encephalomalacia noted on MRI,
and through the posterior frontal lobe to reach the cingulate gyrus. We an-
alyzed 54 clinical seizures from this patient.
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Figure 31: EC plots for the SLRPM method for seizures 1, 2, 3, 4, 5, 6, and 7,
shown in panels a, b, c, d, e, f, and g, respectively, in patient 3. Green lines in all
plots denote the seizure onset time.

Plots ofMI, CC, EC, and latent inputsmeasures from the SLRPMmethod
for four seizures of this patient are shown in Figures 39, 40, 41, and 42, re-
spectively. We note that ictal dynamics is not obvious from the MI plots,
but can be seen, to a varying extent, in the CC plots where a relatively
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Figure 32: Plots of the latent inputs estimated by the SLRPM method for
seizures 1, 2, 3, 4, 5, 6, and 7, shown in panels a, b, c, d, e, f, and g, respectively,
in patient 3. Green lines in all plots denote the seizure onset time.

large number of electrodes become uniformly active. Clear change in preic-
tal dynamics in the EC plots also demonstrates the capability of the SLRPM
method to capture ictal dynamics. The latent inputs measure appears to
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Figure 33: Electrode locations in patient 4.

Figure 34: MI plots for the SLRPM method for seizures 1, 2, and 3, shown in
panels a, b, and c, respectively, in patient 4. Green lines in all plots denote the
seizure onset time.

be the most sensitive among all measures in this patient. Ictal dynamics is
very clear by the relative lowering of the putative latent inputs followed by
a sharp increase.
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Figure 35: CC plots for the SLRPM method for seizures 1, 2, and 3, shown in
panels a, b, and c, respectively, in patient 4. Green lines in all plots denote the
seizure onset time.

Figure 36: EC plots for the SLRPM method for seizures 1, 2, and 3, shown in
panels a, b, and c, respectively, in patient 4. Green lines in all plots denote the
seizure onset time.
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Figure 37: Plots of the latent inputs estimated by the SLRPM method for
seizures 1, 2, and 3, shown in panels a, b, and c, respectively, in patient 4. Green
lines in all plots denote the seizure onset time.

Figure 38: Electrode locations in patient 5.
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Figure 39: MI plots for the SLRPMmethod for four seizures in patient 5. Green
lines in all plots denote the seizure onset time.

Figure 40: CC plots for the SLRPMmethod for four seizures in patient 5. Green
lines in all plots denote the seizure onset time.
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Figure 41: EC plots for the SLRPMmethod for four seizures in patient 5. Green
lines in all plots denote the seizure onset time.

Figure 42: Plots of the latent inputs estimated by the SLRPM method for four
seizures in patient 5. Green lines in all plots denote the seizure onset time.
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