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Abstract

Recent work has revealed that state space models (SSMs), while efficient for long-
sequence processing, are fundamentally limited in their ability to represent formal
languages—particularly due to time-invariant and real-valued recurrence structures.
In this work, we draw inspiration from adaptive and structured dynamics observed
in biological neural systems and introduce the Adaptive Unitary State Space Model
(AUSSM): a novel class of SSMs that leverages skew-symmetric, input-dependent
recurrence to achieve unitary evolution and high expressive power. Using algebraic
automata theory, we prove that AUSSM can perform modulo counting and simulate
solvable group automata at precision logarithmically bounded in the input length,
enabling SSMs to model a broad class of regular languages out of reach for other
SSM architectures. To overcome the practical inefficiencies of adaptive recurrence,
we develop a separable convolution formulation and a CUDA implementation that
enables scalable parallel training. Empirically, we show that AUSSM and its hybrid
variant—interleaved with Mamba—outperform prior SSMs on formal algorithmic
tasks such as parity and modular arithmetic, and achieve competent performance
on real-world long time-series classification benchmarks. Our results demonstrate
that adaptive unitary recurrence provides a powerful and efficient inductive bias
for both symbolic and continuous sequence modeling. The code is available at
https://github.com/arjunkaruvally/AUSSM

1 Introduction

Modeling long-range dependencies efficiently and expressively remains a central challenge in se-
quence modeling. While Transformer architectures have achieved state-of-the-art results across
domains such as language modeling [1, 2, 3], forecasting [4, 5], and protein design [6], their quadratic
complexity with respect to sequence length limits scalability [7]. In response, recent work has
explored state space models [8, 9] (SSMs) as a scalable alternative, using linear-time convolutions
and structured recurrence to enable efficient processing of long sequences [9, 10]. Despite the
computational advantages SSMs offer, they are fundamentally limited in their ability to express
general linear time-varying systems and formal languages efficiently. Even basic regular languages
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that require counting, such as parity or balanced parentheses [11] are impossible for practically used
SSM architectures like Mamba that have positive real eigenvalue spectra. Frontier SSMs are either
Linear Time Invariant (LTI) or partially Linear Time Varying (LTV) 1, resulting in weaker expressivity
compared to more general LTV systems that are capable of approximating any non-linear dynamical
systems [12]. Two properties thus emerge as necessary for increasing the expressivity of SSMs: a
general eigenvalue spectrum and adaptive recurrence. However, incorporating both these properties
naively in SSMs introduces gradient instability through the exploding/vanishing gradient problem
[13], and leads to quadratic computational complexity, severely limiting scalability.

In this work, we propose the Adaptive Unitary State Space Model (AUSSM) as a principled middle
ground between scalability and expressivity. AUSSM is a fully adaptive state space model with
linear time-varying recurrence and a unitary eigenvalue spectrum, combining the theoretical benefits
of time-varying recurrence with the practical advantages of structured, conserved dynamics. We
formally prove that AUSSM can perform modulo counting with constant-width hidden states, and
that combining AUSSM with existing non-adaptive models like Mamba yields maximal expressivity
within the class of diagonal SSMs. To make this architecture scalable, we introduce a novel separable
kernel formulation for adaptive SSMs that exposes efficient computational algorithms which reduce
the quadratic cost of adaptive recurrence to linear time and space. Empirically, we validate the
theoretical claims through a suite of algorithmic tasks, demonstrating substantial performance gains
over Mamba, and showing that AUSSM retains competitive efficiency through an optimized CUDA
implementation. Further, we evaluate the long-range modeling capabilities by testing on a suite of
time series benchmarks.

Interestingly, structured unitary and adaptive dynamics are also found as emergent behavior in
biological neural systems [14] and even trained non-linear recurrent neural networks [15], where
they are believed to support flexible integration of information over space and time [16]. We take the
computational role of these structured unitary dynamics as a motivation to derive AUSSM using a
skew-symmetric ODE used in identifying purely rotational features from data in neuroscience [17].

AUSSM provides a new architectural foundation that bridges formal expressivity and practical
scalability (Figure 1). It expands the space of scalable SSMs by showing that adaptive (and time-
varying) recurrences can be made computationally efficient, unlocking new capabilities for symbolic
and long-context sequence modeling that is grounded in biological principles and theory.

2 Background and Motivation

State Space Models (SSMs) have emerged as efficient alternatives to Transformers for sequence
modeling, particularly in long-context settings. SSMs compress arbitrarily long sequences into a
fixed-dimensional hidden state using a recurrent formulation and this can be computed in parallel
using an efficient convolution formulation.

The most general SSMs are described by a continuous-time Ordinary Differential Equation (ODE):

dx(t)

dt
= Atx(t) +Btu(t), y(t) = Ctx(t) (1)

or its discrete counterpart:

x(t) = A′
tx(t− 1) +B′

tu(t), y(t) = C ′
tx(t) (2)

where x(t) ∈ Rn is the hidden state, u(t) is the input, and y(t) is the output. The matrices At, Bt, Ct

define the system dynamics and may vary over time. In the discrete system, these matrices have
an equivalent discretized counterpart in A′, B′, C ′, respectively. The discrete recurrence can be
reformulated as a parallel convolution:

y(t) =
∑
k≤t

C ′
t

(
A′

t−1 · · ·A′
k+1

)
B′

ku(k) (3)

However, this convolution kernel requires O(L2) memory for sequence length L, as each kernel entry
must be stored for t and k that index over the sequence length. To avoid this, most practical SSMs

1Interested readers are referred to Appendix B, Expressivity of Single Block SSMs for the definitions of LTI,
partial LTV, and LTV.
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(a) Formal language classes recogniz-
able by different architectures.

(b) SSM block structure of Mamba and AUSSM (input-dependent com-
ponents are shaded in blue).

Figure 1: (a) Existing practical SSM blocks like Mamba use fast parallel algorithms for computing
the output, resulting in a tradeoff with expressivity. Non-diagonalizable Linear RNNs are the most
expressive (in formal language terms) but lack scalable computational algorithms and suffer from
gradient issues. AUSSM balances the expressivity-scalability tradeoff using a fully adaptive diagonal
unitary recurrence. Fast SSMs with improved expressivity can be built by combining AUSSM with
MAMBA blocks. (b) The AUSSM block uses the same block structure as Mamba [10], where the
S6 SSM in Mamba is replaced with AUSSM. The main difference between AUSSM and S6 is the
adaptive recurrence, where in the case of S6, B, C, and ∆ are adaptive, whereas in AUSSM, ∆ and
A are adaptive (see Section 3 for details). AUSSM blocks can be used as drop-in replacements for
existing SSM backbones to provide higher expressivity (see Section 3.1 for theoretical and Section 5
for experimental validation).

assume time-invariant dynamics (Ak = A,Bk = B,Ck = C), allowing for a compressed storage of
the kernel but significantly restricting expressivity. Recent SSMs like Mamba [10] introduce partial
adaptivity, where B,C, and step size ∆) are adaptive while keeping A fixed or diagonal. However,
such models cannot simulate general Linear Time-Varying (LTV) systems or perform counting-
based tasks (e.g., parity, modular arithmetic) with constant-width hidden states (see Appendix B).
These limitations prevent Mamba from modeling input-sensitive dynamics or general multiscale
time-varying behavior (Appendix B). There are other approaches that try to improve the expressivity
of SSMs by generalizing real-valued recurrences. Notably, Linear Recurrent Units [18] generalize
the real-valued eigenvalue spectra with initialization close to the unit circle on the imaginary plane.
This formulation has been shown to be capable of universal approximation when interleaved with
non-linear multi-layer perceptrons [19]. However, this approximation relies on perfectly storing
the dynamical system history without regard to resource constraints. General LTV systems are
much more flexible as they have the capability to gate information based on input, thereby retaining
only selected information (compressed information) that is necessary for processing, rather than
a lossless history. Another notable work is linear Oscillatory State Spaces (linOSS) [20], where
simple harmonic ODEs are discretized to derive novel oscillatory SSMs with conservation properties
identical to AUSSM. The linOSS models are more expressive than SSMs with purely real eigenvalues,
but fall short of an LTV system. AUSSM balances the two - the improved expressivity of diagonal
LTV systems (using adaptive recurrence) and the scalability of separable convolutions.

3 Adaptive Unitary State Space Model (AUSSM)

We tackle the problem of balancing expressivity with scalability in Adaptive State Space Models
by introducing two features. Adaptive input-dependent recurrent matrix improving expressivity,
and unitary dynamics addressing training scalability. In this section, we derive AUSSM from the
skew-symmetric ODE used to identify rotational features in the brain [17], then we prove that the
inputs control AUSSM rotational frequencies smoothly, enabling a stable and effective adaptive SSM.
Next, we prove that the AUSSM, combined with regular Mamba layers, is maximally expressive in
the class of diagonal SSMs in terms of formal language recognition.

To derive the AUSSM model with purely rotational properties, we use the skew-symmetric Ordinary
Differential Equation (ODE) used in the rotational Principal Component Analysis (jPCA) procedure -
a variant of Principal Component Analysis (PCA) used in neuroscience [17]. jPCA is used to identify
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rotational features of a dynamical system using observations from it. Since our requirement is to
process an input signal u(t) into the hidden state, we use a version of the jPCA ODE with control
input given by Equation 1, with the additional constraint that the input matrix At is skew-symmetric
(with purely imaginary eigenvalues) and Bt and Ct stay constant with time, i.e., Bt = B and Ct = C.
We discretize the ODE following the procedure used in Mamba [10] with a step size ∆t ∈ R to
obtain a discrete dynamical system (See Appendix C for details),{

x(t) = exp(∆tAt) x(t− 1) + ∆tB u(t) ,

y(t) = C x(t) .
(4)

Note here that At changes with time from adaptivity, and it is a skew-symmetric matrix. We assume
that At, ∀t belongs to a class of simultaneously diagonalizable matrices. Therefore exp(∆tAt) can
be diagonalized to obtain exp(∆tiΛj(t)) where Λj(t) ∈ R and each iΛj(t) is the jth eigenvalue of
the matrix At. This implies that the final discrete dynamical system has purely unitary eigenvalues,
i.e., eigenvalues exactly on the unit circle. The AUSSM ODE is a marginally stable, time-varying
linear system where the input both drives and dynamically reshapes the system. The skew-symmetric
nature of At guarantees marginal stability by ensuring that all eigenvalues lie on the imaginary axis in
continuous time, or on the unit circle after discretization (see Lem. 4 in Appendix D). This structure
enables long-term memory retention without gradient explosion or decay (see Lem. 5 in Appendix D)2.

The adaptivity of At is enforced by making At a function of input with At = f(u(t)) where
f : R → Rn is the function defining how the input influences the recurrent matrix. With adaptivity,
the input acts as a control signal, shaping the rotational dynamics based on the instantaneous input,
analogous to gain scheduling or bilinear control systems [21, 22]. This design allows the system to
dynamically traverse a spectrum of rotational behaviors in the state space, facilitating expressive
temporal modeling driven by the input signal.

Theorem 1 (Input-Modulated Rotation Frequencies via Skew-Symmetric Generator). Let A : R →
Rn×n be a smooth function such that A(u) is skew-symmetric for all u ∈ R. Then for each u ∈ R,
all eigenvalues of A(u) lie on the imaginary axis, and the eigenvalues of the discrete-time transition
matrix Φ(u) = exp(∆A(u)) lie on the complex unit circle. Furthermore, the eigenvalues of A(u)
depend continuously on u, and thus the angular frequency of state-space rotation is smoothly and
directly modulated by the input. See proof in Appendix D.

Hence, by designing A(u) appropriately (e.g., via a learnable function f(u)), the AUSSM can
modulate the rotational speed and mode structure of the hidden state space based on the input signal
in a smooth and controlled manner. Further details on how the above SSM is practically implemented
are in Section 4, where we diagonalize the above ODE and introduce input adaptivity. The inputs also
have a dimension of d, in which case the proposed SSM is applied to each input dimension following
the approach used in Mamba.

3.1 Formal Expressivity

Given our construction of the AUSSM, how expressive is it for formal languages?

The goal of a formal expressivity theory is to determine, for a given architecture class, which
functions or formal languages can be represented by some finite instantiation of that architecture.
The quantification is over architectures —i.e., over possible finite hyperparameter settings such as
model dimension, input dimension, or transition rank—rather than over the parameters within a fixed
instantiation. Formal expressivity analysis goes beyond our earlier discussion of limitations of SSMs
in expressing LTV dynamical systems (further detailed in Appendix B).

Representing simple formal languages has been found to be a major weakness of SSMs. Recently, a
flurry of research has utilized algebraic automata theory, specifically Krohn-Rhodes theory [23], to
analyze the types of formal languages expressible by different LLM architectures, notably transform-
ers [24] and SSMs [11, 25]. The Krohn–Rhodes decomposition theorem states that any finite-state
machine can be simulated by a cascade of simpler automata drawn from two types: permutation au-
tomata, which model reversible group-like behavior, and reset automata, which model state-resetting
dynamics (the next state depends only on the input, not on the current state). This result implies

2In practice, there will always be small deviations from the ideal theoretical behavior due to the limited
precision of modern computers.
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that complex regular languages can be recognized by composing SSMs that simulate these simple
automata. There is a subset of finite-state automata whose decomposition contains only set-reset
automata and cyclic permutation automata, which suffices to recognize a large subset of regular
languages, the so-called solvable languages.

Most SSMs used in practice have diagonal or diagonalizable transition matrices A that can only have
positive eigenvalues. As [11] showed, this means they cannot perform modulo counting, restricting
their expressivity to the subset of star-free regular languages.3 [11] also outlines the necessary
conditions for SSMs to overcome this limitation and represent a larger class of regular languages.
This requires 1. the ability to implement modulo counters, and 2. the ability to implement Krohn-
Rhodes cascade products. Here, we reiterate their relevant results and show that our implementation
not only satisfies these conditions but can recognize any solvable regular language, a language class
out of reach for most practical SSMs. For a unified overview situating our expressivity results within
the SSM expressivity literature, see §A.

Fact 1 ([11], Thm. 2). Diagonal (or diagonalizable) SSMs with only positive eigenvalues cannot per-
form modulo counting at finite precision, which means they can only recognize star-free languages.4

Lemma 1. For any k ∈ Z+, one can construct a single-layer AUSSM that counts modulo k, which
means AUSSMs can simulate arbitrary cyclic group automata.

Proof sketch. Assume we want to count the number of 1’s modulo 2 in a length-T input sequence
(u)t=1,...,T ∈ {0, 1}T . A single-layer AUSSM with x0 = 1, A(1) = −1, A(0) = 1, and B(0) =
B(1) = 0 will have a hidden state of xt = −1 for odd counts and xt = 1 for even counts of 1 up to
position t. Similarly, to count modulo 4, we can set A(1) to the fourth root of unity, i.e., either i or −i,
and A(0) = 1, B(0) = B(1) = 0, as before. This method can be extended to other mod k counters
by setting A(1) to the kth root of unity, exp(2πi/k). An AUSSM can take on these parameters as
it uses input-dependent A matrices whose eigenvalues lie on the unit circle of the complex plane.5
This technique can be extended to perform modulo k addition, which allows the simulation of cyclic
group automata (see §E).

Lemma 2. An SSM consisting of interleaved Mamba and AUSSM blocks (hybrid Mamba+AUSSM)
can implement cascade products of automata simulated by Mamba SSMs and AUSSMs.

Proof sketch. [11, Lem. 19] showed that multilayer Mamba SSMs can implement cascade products
of Mamba layers simulating set-reset automata, which, by Schützenberger’s theorem [26], means
they can recognize any star-free language. This can easily be extended to show that any automaton
simulated by Mamba or AUSSM layers can be joined into a cascade product within alternating
Mamba and AUSSM blocks. This works because we can always add additional padding layers at any
point in the hybrid SSM without changing the behavior of the remainder of the SSM.

Theorem 2. Hybrid Mamba+AUSSM can recognize any solvable language, that is, any regular
language whose syntactic monoid does not contain non-solvable subgroups.

Proof sketch. By Lem. 1, an AUSSM layer can simulate cyclic group automata, and [11, Lem. 19]
showed that a Mamba layer can simulate set-reset automata. Now, the Krohn-Rhodes theorem states
that every finite automaton divides a cascade of alternating aperiodic monoids (set-reset automata)
and finite simple groups (permutation automata). A finite group is solvable iff its decomposition series
contains only cyclic groups of prime order (cyclic group automata with prime-length cycles) [27, Ex.
3.4.8]. By Lem. 2, hybrid Mamba+AUSSM can implement the Krohn-Rhodes cascade product of
set-reset automata (Mamba) and cyclic group automata (AUSSM). Therefore, it can recognize all
solvable languages. (cf. [11, Thm. 21]).

3Star-free languages are those languages that can be defined without the use of a Kleene star, only using
concatenation, union, and complement.

4Note that this theorem assumes finite precision; similar limitations are expected to persist under logarithmi-
cally bounded precision, though we do not attempt a full extension here.

5We assume an idealized setting in which the numerical precision is logarithmic in the sequence length. For
most sequence lengths seen in practice, this is a reasonable assumption (see §E for details).
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Regular languages that require representing more complex non-solvable group transformations, such
as the word problem in S5 or A5, lie outside of this set, and according to widely held assumptions
about computational expressivity theory, cannot be modeled by diagonal SSMs [28]. This means
combining Mamba with AUSSM maximizes the representational capacity of diagonal SSMs (short of
lifting the diagonal transition restraint, which leads to poor scaling).

4 Separable Convolution Kernels for Scalable Adaptive SSMs

One of the main challenges in designing SSMs is the computational efficiency of the implementation.
Simulating the discrete dynamical system in Equation 4 naively is not computationally efficient
as it leads to quadratic memory scaling when it is parallelized using the typical SSM convolution
procedure (Appendix F.1). In this section, we introduce a separable kernel formulation for the efficient
computation of adaptive time-varying SSMs. Our formulation works directly in the convolution
form of the SSM and instantly exposes the separability and is applicable to a wider class of adaptive
SSMs as shown below. We note here that the separable kernel formulation is not specialized for
the AUSSM, but applies to any class of SSMs that are simultaneously diagonalizable [29]. We
therefore formulate the theory in the general case and provide sufficient conditions to apply the theory
in practice.

The general convolution formulation of general SSMs in Equation 3 is typically used to convert a
discrete dynamical system form of an SSM to an efficient parallel implementation. This form is
abstracted as applying a convolution on the input, following the equation

y(t) =
∑
k≤t

K(t, k)u(k) . (5)

The reason for the quadratic memory scaling of the convolution operation can be observed in this
abstracted form as storing the K(t, k) convolution kernel requires, in general, O(L2) memory, where
L is the sequence length.

Separable convolution kernels have the additional property that K(t, k) = f(t) g(k) that enables
writing the output as

y(t) = f(t)
∑
k≤t

g(k)u(k) . (6)

Storing the additional f(t) and g(k) requires only an additionalO(2L) memory. This is comparable to
the non-adaptive case, which has a scaling O(L), producing asymptotic memory efficiency matching
that of the non-adaptive SSM with only a constant factor increase in memory use. The above
convolution formulation can be efficiently computed in O(log(L)) time by using the parallel prefix
sum algorithm [30]. It is instructive to apply this formulation to an existing SSM to identify efficient
computational structures - we use the partially adaptive Selective State Space Model (S6) used in the
popular Mamba model [10].

Separable Convolution Formulation of Mamba Selective SSM (S6): In S6, the matrices C and
B vary with input (making the SSM selective to input), in addition to the step size ∆ varying with
time. This generalization results in the output of the SSM written in the convolution form as:

yti =
∑
k≤t

∑
j

Ctj exp((t∆ti − k∆ki)Aj)∆kiBkj ui(k) . (7)

Here, the input u ∈ Rd is a vector and the SSM is applied to each input dimension in parallel.
The index i is over the input dimension d, and j indexes the hidden state dimension n. In the
general convolution formulation we showed above, the S6 output is formulated as applying the
convolution kernel K(t, k) = Ctj exp((t∆ti − k∆ki)Aj)∆kiBkj on the inputs over time ui. Note
here that, unlike typical time-invariant SSMs, the S6 convolution kernel is unique to each y as
∆, B, C change with time. Since K(t, k) =

(
Ctj exp(t∆tiAj)

)(
exp(−k∆kiAj)∆kiBkj

)
, the

kernel is separable and we can use the procedure we introduced above to compute the S6 output in a
time and memory-efficient manner (see Appendix G.1 for an efficient PyTorch Implementation of the
S6).
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Figure 2: AUSSM with separable convolution achieves efficient runtime and memory scaling for
fully adaptive SSMs. The runtime and peak memory usage of four implementations are compared:
recurrent PyTorch AUSSM, separable PyTorch AUSSM, our optimized CUDA AUSSM kernel, and
the Mamba CUDA kernel. (a) The AUSSM CUDA implementation outperforms both PyTorch
baselines in speed and memory efficiency, and approaches the memory efficiency of Mamba despite
AUSSM’s full adaptive recurrence. Notably, the PyTorch implementation of the separable convolution
has better runtime efficiency compared to the recurrent implementation, albeit at a higher memory
cost. (b) The AUSSM CUDA kernel has a significantly lower memory footprint, identical to that of
the partially adaptive and optimized Mamba CUDA kernel.

Separable Convolution Formulation of AUSSM: In the case of S6, the separable formulation
was easily revealed directly from the convolution form. In the case of AUSSM, this separability is not
possible for the most general case. However, when the set of recurrent matrices At is simultaneously
diagonalizable, the output of the AUSSM in Equation 4 can be formulated as (See Appendix C for
details)

yti = �


∑

k≤t

∑
j

Cj exp


i

∑
l≤t

θAlij


 ∆kiBj

exp
(
i
∑

l≤k θAlij

) ui(k)


 . (8)

Here, θAlij
=

∑
r xijrur(k) + xbias

ij is the angle argument of the unitary discretized A′ matrix in
the polar form. Note here that as the AUSSM has complex eigenvalues, the final output is also
complex, and we use only the real part of the output with the function �[·]. With this formulation of
the AUSSM recurrence, a memory and time efficient computation of the adaptive SSM is obtained,
however, implementing this convolution directly in PyTorch can still result in high memory usage
as the constant in the O(L) is bdn where b is the batch size, d is the input dimension and n is the
hidden dimension resulting in a large constant factor. We therefore create a CUDA kernel, where
this additional complexity is hidden and the hidden state is only partially materialized in the CUDA
kernel (Appendix G.2).

Another approach to improving the performance of SSMs is tensor core optimization. In tensor
core optimization, special hardware features in NVIDIA GPUs called tensor cores are used to speed
up matrix computations inherent in SSM implementations. This approach is not an entirely new
algorithm with improved scaling behavior, but an implementation approach that enables speed-up in
the special case of GPU architectures where tensor cores are available - which is most high-end GPUs
available in the market. Experimental evaluations have also shown that tensor core optimization
approaches can provide a constant factor increase in performance on high-end GPU hardware, but
retain the same scaling behavior - the big-O scaling factor. Recent works have utilized this approach to
improve the performance of time-varying SSMs, but side-step the fundamental algorithmic limitations
of the problem. In contrast, our proposed algorithm for adaptive SSMs can be applied in more general
cases and still provide guaranteed algorithmic scaling behavior even in GPUs where tensor core
optimization is not available - for example, edge computing, other GPU makers.

5 Experiments

We empirically validate the theoretical claims of AUSSM by evaluating both its computational effi-
ciency and expressivity. First, we benchmark runtime and memory usage across four implementations,
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Task Mamba
Complex

Mamba
[-1,1] xLSTM Mamba AUSSM AUSSM

Hybrid

C.S

repetition 0.09 0.10 0.09 0.153 0.19932 0.451

bucket sort 0.21 0.912 0.7 0.69 0.921 0.833

majority count 0.19 0.31 0.51 0.452 0.096 0.373

majority 0.13 0.633 0.642 0.691 0.57 0.642

D.C.F solve equation 0.431 0.242 0.242 0.05 0.073 0.073

mod arith 0.12 0.116 0.152 0.04 0.133 0.231

Reg.
mod arith wo bra 0.23 0.24 1.01 0.13 0.483 0.532

cycle nav 0.42 0.912 0.8 0.86 1.01 1.01

parity 0.27 1.01 1.01 0.132 1.01 1.01

Table 1: AUSSM and hybrid AUSSM+Mamba models outperform Mamba on tasks requir-
ing counting and structured memory. We evaluate xLSTM, Mamba, AUSSM, and a hybrid
AUSSM+Mamba model on a suite of algorithmic reasoning tasks. The table shows the scaled test
accuracies on each task. The tasks are grouped by their position in the Chomsky hierarchy (C.S:
context-sensitive, D.C.F: Deterministic Context Free, Reg. Regular). AUSSM achieves perfect
accuracy on tasks like parity and cycle navigation, which require modulo counting, validating
its theoretical expressivity. While Mamba performs better on tasks such as majority count, the hy-
brid model consistently achieves the best or near-best performance across most tasks, demonstrating
that combining adaptive unitary dynamics with real-valued recurrence yields a more expressive and
general-purpose architecture. The scaled accuracies for xLSTM and Mamba are obtained from [31].

including our CUDA-optimized AUSSM and Mamba. Second, we assess expressivity on a suite
of algorithmic tasks requiring formal language recognition, such as parity and modular arithmetic.
Finally, we evaluate real-world applicability on long-sequence classification and regression tasks,
demonstrating that the improved expressivity of AUSSM translates to practical performance gains.

5.1 Scalability Evaluation

We benchmark four implementations of AUSSM to assess efficiency: (1) a naive PyTorch recurrent
version, (2) a PyTorch version using separable convolutions with a higher constant factor in the linear
scaling, (3) our custom CUDA kernel, and (4) the Mamba CUDA kernel as a baseline. Experiments
were run on a single NVIDIA 2080 Ti GPU with 11 GB VRAM. As shown in Figure 2, the CUDA-
based AUSSM achieves significantly lower memory usage and faster inference compared to the
PyTorch variants, approaching the efficiency of Mamba despite full adaptivity. The separable PyTorch
implementation improves runtime over the recurrent baseline but incurs higher memory costs. Overall,
our separable formulation paired with a low-level CUDA kernel enables AUSSM to scale to long
sequences efficiently, validating the theoretical benefits of scalability.

5.1.1 Expressivity Evaluation

To evaluate formal expressivity, we benchmark AUSSM, Mamba, xLSTM [31], and a hybrid
AUSSM+Mamba model on a suite of algorithmic tasks drawn from various levels of the Chomsky
hierarchy. These include tasks requiring counting (e.g., parity, modular arithmetic), memory ma-
nipulation (e.g., repetition), and symbolic reasoning (e.g., equation solving). Models are trained on
sequences up to length 40 and tested on lengths up to 256 to assess length generalization performance.
We evaluate all the models using scaled validation accuracies to account for the differing number of
output classes in the algorithmic tasks.

The results are shown in Table 1. The AUSSM achieves perfect accuracy on tasks that require modulo
counting and cycle tracking, validating its theoretical ability to simulate cyclic group automata via
unitary and adaptive dynamics. In contrast, Mamba fails to generalize on these tasks, consistent with
the limitations of partially adaptive and dissipative models. However, AUSSM performs poorly on
tasks such as majority or equation solving, where dissipative dynamics may be required for stability
and information aggregation. Notably, the AUSSM hybrid model performs significantly better than
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Dataset Heartbeat SCP1 SCP2 Ethanol Motor Worms Avg
Seq. len. 405 896 1152 1751 3000 17984
# classes 2 2 2 4 2 5

S5 47.8 ± 3.1 74.2 ± 2.1 10.2 ± 3.3 0.8 ± 3.5 6.0 ± 3.9 79.9 ± 4.1 36.4
S6 53.0 ± 8.31 65.6 ± 2.7 -0.2 ± 9.4 1.9 ± 6.4 2.6 ± 4.7 81.3 ± 6.2 34.0
linoss 51.6 ± 3.7 75.6 ± 2.61 17.8 ± 8.11 6.5 ± 0.61 20.0 ± 7.51 93.8 ± 4.41 44.21

Mamba 52.4 ± 3.8 61.4 ± 1.4 -3.6 ± 3.9 3.9 ± 4.5 -4.6 ± 4.5 63.6 ± 15.8 28.8

Hybrid 53.0 ± 3.81 64.2 ± 4.9 4.2 ± 6.8 4.7 ± 4.1 2.6 ± 5.5 82.6 ± 3.4 35.2

Table 2: Hybrid AUSSM with Mamba achieves competent performance on long time-series
classification benchmarks. We evaluate the hybrid model on six UEA datasets spanning a wide
range of sequence lengths and domains. The table shows the scaled test accuracies for the different
models compared to the hybrid AUSSM. The hybrid AUSSM consistently outperforms the base
Mamba and achieves competent accuracy across datasets. These results demonstrate that the increased
expressivity of AUSSM, when combined with Mamba’s stability, translates into strong real-world
performance even on long and complex sequence data. Our model is evaluated on a statistically
rigorous test with 20 different seeds to obtain a better estimate of test accuracy to reduce the reliance
on arbitrary evaluation seeds used in prior works [20].

all existing RNNs, including the xLSTM, suggesting that AUSSMs and Mamba blocks are synergistic
and exhibit performance benefits that neither individual model provides. These results empirically
support our theoretical claim that hybrid models combining AUSSM and Mamba maximize the
expressivity of diagonal SSMs under the Krohn–Rhodes framework.

5.2 Long Time-Series Classification and Regression Benchmark

To evaluate the practical benefits of our architecture, we test the hybrid AUSSM+Mamba model on a
suite of UEA long-time-series classification benchmarks [32] and the challenging Weather regression
benchmark. We take the AUSSM block as a drop-in replacement for an existing Mamba backbone.
Specifically, we randomly selected a fixed number of Mamba blocks in a deep Mamba SSM model
and replaced them with the AUSSM blocks. The UEA tasks feature much longer sequences than the
algorithmic benchmark, with lengths ranging from 405 in the Heartbeat dataset to over 17,000 in
the Worms dataset. For regression, we use the challenging Weather dataset where climate variables
are forecasted 720 steps into the future, given a window of 720 timesteps. These benchmarks
present a more realistic and diverse set of challenges, which includes physiological signals, chemical
concentrations, motion data, and climate, each requiring the model to capture both local and global
temporal dependencies.

For the UEA benchmarks and the weather dataset, we used identical hyperparameter strategies to
those used by the models we compare against. During testing, we found that previous works used
five randomly chosen seeds to evaluate the test performance. This is not easily reproducible, as
the particular choice of the seeds influences the specific test datasets that are chosen for evaluation
and may produce biased results. We instead use a statistically rigorous technique where the best
hyperparameter model is chosen based on the validation set performance on five random seeds, and
the test accuracy is evaluated on random train-test splits on the selected model with 20 different
seeds to produce better test accuracy estimates. We scaled test accuracies with the baseline and
report the results in Table 2. The hybrid AUSSM+Mamba model achieves substantial improvements
over the partially adaptive Mamba SSM on average, even under the modified testing protocol. The
results demonstrate that the improved expressivity of AUSSM carries over to real-world tasks when
appropriately combined with the stability and inductive biases of partially adaptive models. Notably,
the hybrid model achieves these results while maintaining high efficiency: all experiments except
EigenWorms were run on a single NVIDIA 2080 Ti GPU with 11 GB of VRAM, in contrast to the
large-scale hardware (e.g., 100 GB A100 GPUs) typically used for long-sequence modeling. The
Eigenworms dataset was trained on an L4 GPU with 23 GB VRAM due to its larger size.
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Model Mean Absolute Error ↓
Informer 0.731
LogTrans 0.773
LSTMa 1.109
LSTnet 0.757
S4 0.578
LinOSS 0.5083

Mamba 0.4642

AUSSM Hybrid 0.3421

Table 3: Hybrid AUSSM+Mamba achieves state-of-the-art performance on long time-series
weather forecasting benchmark. We evaluate AUSSM against 7 different models on the challenging
weather forecasting benchmark, where climate variables are forecasted 720 timesteps into the future.
AUSSM Hybrid achieves state-of-the-art performance on the task, improving on the base Mamba
model and all the other models.

6 Discussion

In this work, we address the expressivity-scalability tradeoff in state space modeling. Existing SSMs
like Mamba are scalable but limited in expressivity due to fixed or partially adaptive recurrence.
On the other hand, more general LTV SSMs are more expressive but do not have an efficient and
scalable parallel implementation. We introduce the Adaptive Unitary State Space Model (AUSSM),
which uses input-dependent skew-symmetric recurrence to achieve both unitary evolution and high
expressivity. We showed that theoretically, AUSSM can implement modulo counters and simulate a
broad class of regular languages, maximizing expressivity among diagonal SSMs when combined
with Mamba under the Krohn–Rhodes framework. To ensure scalability, we develop a separable
convolution formulation and a custom CUDA kernel, enabling linear-time training despite full
adaptivity. Experimental analysis on standard benchmark tasks showed that AUSSM achieves strong
performance on symbolic reasoning tasks and serves as an effective drop-in enhancement to Mamba
for long-range sequence modeling. Together, these results suggest that adaptive unitary recurrence is
a powerful inductive bias for both symbolic and continuous sequence tasks.

Limitations. One limitation related to expressivity is that AUSSM is capable of LTV recurrence
only through its linearly adaptive (input-dependent) recurrent matrix. For the more general LTV
recurrence, the recurrent matrix needs to have the capability for non-linear input-dependence that is
additionally dependent on time.

Further, our separable kernel approach used for optimization relies on the assumption that recurrent
matrices are simultaneously diagonalizable, limiting the ability to express languages beyond solvable
regular languages. While the separable kernel has identical scaling behavior to efficient LTI models,
it is still a constant factor higher. Hybrid AUSSM+Mamba models show promise, but the best
strategy for combining blocks is not yet well understood. Another limitation in the parallel scan-
based algorithm we proposed is that, in the case of high-end NVIDIA GPUs, alternate tensor core
approaches may provide even better absolute speedup, although with the same scaling behavior. An
alternate tensor core-based algorithm for AUSSM is an interesting avenue for future work in real-
world applications. Finally, due to resource limitations, our evaluations are limited to modest-scale
tasks; further validation on foundation-model scale benchmarks is needed.
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A Related Work

In this appendix section, we provide an extensive discussion of related work on unitary RNNs,
conserved dynamics in the brain, and the computational complexity of RNNs and SSMs.

A.1 Unitary RNNs

Recurrent neural networks (RNNs) are powerful models for processing sequential data, but their
training is often hindered by the vanishing and exploding gradient problem, which limits their ability to
capture long-range dependencies [13]. A major source of this instability is the repeated multiplication
of the hidden state by the recurrent weight matrix, which causes gradients to exponentially decay
or grow depending on the spectral norm of the matrix. To address this, a prominent line of research
constrains the recurrent dynamics to be unitary, ensuring that the hidden state evolution preserves its
norm through time. Such norm-preserving dynamics prevent gradient magnitude degradation and are
mathematically analogous to energy-conserving, reversible dynamical systems.

The first major work in this direction was Unitary Evolution Recurrent Neural Network (uRNN) [33]
that proposed parameterizing the recurrent weight matrix as a product of structured unitary matrices
(including diagonal phase matrices, Fourier transforms, and Givens rotations) to ensure exact unitarity
while retaining efficient computation and gradient flow. However, this parameterization limited
expressivity due to its constrained structure. To overcome this, Full-Capacity Unitary RNN [34]
optimized directly over the unitary group using manifold optimization techniques. By employing the
Cayley transform and optimization on the Stiefel manifold, they achieved full representational power
while preserving unitary constraints.

Subsequent research explored alternative approaches for maintaining orthogonality and improving
trainability. Efficient Unitary Neural Networks (EUNN) [35] used parameter-efficient decompositions
enabling flexible trade-offs between computational cost and expressivity. Vorontsov et al. Orthogonal-
ity regularization methods softly constrain the recurrent weight matrix toward being orthogonal rather
than enforcing strict unitarity, allowing some deviation to improve learning flexibility [36]. Similarly,
Mhammedi et al. [37] developed a real-valued orthogonal RNN based on Householder reflections,
which guarantees orthogonality through efficient matrix parameterizations. Later, Lezcano-Casado
and Martínez-Rubio [38] introduced an elegant exponential parametrization of orthogonal and unitary
matrices via skew-symmetric matrices, offering a smooth and numerically stable way to maintain
orthogonality during training.

A key challenge in unitary and orthogonal RNNs is the choice of suitable nonlinearities. Standard
nonlinearities such as ReLU or tanh can break the norm-preserving property of the recurrent map,
leading to unstable or dissipative dynamics. To address this, [33] introduced modReLU, a complex-
valued nonlinearity that preserves the phase of hidden activations while applying a learned threshold
on their magnitudes. Subsequent studies explored alternatives such as zReLU [39], scaled tanh,
and phase-preserving nonlinearities for complex-valued networks. In [40], the authors analyzed the
interplay between orthogonality, nonlinearity, and gradient flow, providing theoretical insights into
how orthogonal constraints help maintain long-term dependencies even in nonlinear regimes. More
recently, Chang et al. [41] proposed Antisymmetric RNNs, where the recurrent weight matrix is
constrained to be near-skew-symmetric, thereby approximating a Hamiltonian or energy-conserving
flow; this represents a bridge between strict unitarity and continuous-time neural dynamics.

The success of unitary and orthogonal RNNs has motivated several extensions. For example, Tallec
and Ollivier [42] analyzed time-warping effects and timescale adaptation in RNNs, showing how
orthogonality can help control effective memory timescales. Lezcano-Casado [43] further generalized
the parameterization of orthogonal operators to improve optimization stability across different
architectures. The insights from unitary evolution have also influenced more recent Structured State
Space Models (SSMs) [9], which impose spectral stability and linear time-invariant dynamics to
achieve long-range sequence modeling with recurrent efficiency. These connections underscore
the broader relevance of norm-preserving and energy-conserving formulations for building stable,
interpretable, and trainable dynamical models.

16



A.2 Unitary Dynamics in the Brain

A growing body of experimental and theoretical work indicates that neural population activity often
evolves according to dynamics that are, in important respects, conserved or weakly dissipative,
with clear implications for how the brain stores and transforms information. Conserved dynamics
here refers to trajectories or modes that preserve key quantities (e.g., norms, phase relationships,
low-dimensional energy-like functions) over behaviorally relevant timescales, producing smooth,
reversible, or rotational population flows rather than rapidly diffusive or purely dissipative responses.
Empirically, such phenomena appear across modalities and brain areas: propagating and wave-like
activity has been observed in sensory and motor cortices [44, 45, 46, 47], low-dimensional structured
trajectories that persist across trials and conditions have been reported in motor and prefrontal popu-
lations [48, 49, 48, 50, 51], and cortical responses frequently exhibit coherent oscillatory/rotational
components that suggest near-unitary evolution within a task-relevant subspace [49, 52]. These con-
served modes are often embedded within a larger high-dimensional network state, but they dominate
the behaviorally relevant dynamics and appear to support robust temporal computation, short-term
memory, and smooth transformation between input and output representations.

Theoretical and modeling studies have proposed multiple mechanistic origins for conserved or weakly
dissipative neural dynamics. Balanced excitatory–inhibitory network regimes can produce rich
transient dynamics with slow decay or quasi-conserved activity on short timescales; classic balanced-
network analyses show how tightly coupled excitation and inhibition enable irregular activity while
constraining macroscopic statistics, and follow-up work has shown how such balance supports
structured transient trajectories [53, 54]. Network architectures with antisymmetric or near-skew-
symmetric connectivity produce rotational and energy-like flows that are approximately conservative;
control- and dynamical-systems-oriented analyses have demonstrated that small departures from strict
antisymmetry (e.g., weak damping or inputs) permit flexible routing and readout while retaining the
stability advantages of norm-preserving flows [55, 56]. In parallel, reservoir- and recurrent-network
modeling (including trained networks initialized in richly recurrent regimes) has shown that networks
can learn to generate low-dimensional conserved trajectories that implement computations (e.g.,
context-dependent integration, short-term memory) with high robustness to noise and parameter
changes [57, 58].

Methodologically, the identification of conserved modes in neural data relies on dimensionality-
reduction and dynamical-systems tools that explicitly search for rotational, low-dimensional, or
wave-like structure. Approaches range from linear subspace methods that highlight persistent modes
to more specialized decompositions and dynamical fits that extract antisymmetric components,
traveling-wave decompositions, or stable latent manifolds; these analyses have repeatedly revealed
that a relatively small number of conserved or near-conserved modes often capture most of the task-
relevant variance, even when single-neuron responses are heterogeneous [49, 50, 59]. Importantly,
conserved neural dynamics appear functionally beneficial: by concentrating computation in norm-
preserving subspaces, the brain can transform and transmit signals with minimal degradation, enabling
temporally-extended operations such as sequence generation, motor command shaping, and transient
working memory without continual external reinforcement.

Finally, the convergence of empirical findings and theoretical models has motivated viewing cortical
and subcortical circuits through the lens of structured dynamical primitives—rotations, waves,
and nearly-Hamiltonian flows—that are neither purely feedforward nor purely dissipative. This
perspective helps explain phenomena such as reliable single-trial trajectories, robustness of latent
dynamics across learning and perturbation, and the coexistence of fast irregular activity with slow
conserved modes [48, 51, 54]. Recognizing conserved dynamics in the brain also provides a bridge to
normative and engineering approaches (e.g., unitary or antisymmetric RNNs, energy-based network
formulations) that aim to replicate the computational advantages of biological circuits while offering
interpretable and stable mechanisms for long-timescale processing.
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Model family Constant diagonal Adaptive diagonal Adaptive non-diagonal
(examples) S4 Mamba, AUSSM-hybrid (ours) DeltaProduct, RWKV-7

Adaptive no yes yes
Diagonal yes yes no
Eigenvalues [0,1) various complex

Languages (subset of) star-free langs. star-free to solvable langs. permutation group langs.

Table 4: High-level comparison of three families of linear recurrent neural networks (LRNNs) by
adaptivity and diagonality, and their confirmed expressivity under standard assumptions.

Model Mamba Mamba-negative AUSSM-hybrid (ours) Mamba-complex

Adaptive indirect indirect yes (AUSSM) indirect
Diagonal yes yes yes yes
Eigenvalues (0, 1) (−1, 1) unitary (AUSSM) complex

Star-free ✓[11, Thm. 4] ✓[11, Thm. 4] ✓[11, Thm. 4] ✓[11, Thm. 4]
Solvable ✗[11, Thm. 4] ✗[25, Thm. 2] ✓(Thm. 2) ✓[11, Thm. 21]
Regular ✗[28, Thm 4.4] ✗[28, Thm 4.4] ✗[28, Thm 4.4] ✗[28, Thm 4.4]

Table 5: More fine-grained comparison of design features and formal language expressivity of
Mamba-like models.

A.3 Computational Expressivity Theory of Linear RNN Architectures

As linear RNNs (LRNNs), of which SSMs are a special case, have gained in performance and become
a viable alternative to transformers for sequence processing tasks, their formal expressive power has
garnered interest. LRNN denotes the family of recurrent neural networks whose transition function
is a linear or affine transformation of the hidden state (note, however, that the linear transition may
be a non-linear function of the input at each time step). In contrast, traditional RNNs such as the
Elman RNN [60], LSTM[61], or GRU[62] update their hidden state non-linearly between time steps.
State space models (SSMs) such as S4 [9] and Mamba [10] are a subtype of LRNNs motivated by
continuous linear dynamical systems that are discretized to work recurrently as LRNNs. In terms of
formal expressivity, [28] and [11] point out that most SSMs make architectural decisions that limit
their ability to model formal languages. The main factors impacting expressivity are:

• Adaptivity - Whether the transition matrix is held constant over time or is a (non-linear)
function of the input at the current time step.

• Diagonality - Imposing that the transition recurrence is a diagonal or diagonalizable matrix
(simultaneously for all inputs).

• Eigenvalue range - Restricting the transition recurrence to matrices with eigenvalues in a
specific range (e.g., non-negative, real between -1 and 1, complex unitary, etc.).

As well as impacting their expressivity, these decisions also determine the scalability of the architec-
ture, since certain restrictions allow for more efficient implementations, e.g., the product of diagonal
matrices can be computed more efficiently than that of dense matrices. There appears to be a distinct
tradeoff between expressivity and scalability, informally dubbed the parallelism tradeoff [63]. See
Tab. 4 for a comparative high-level overview of different families of LRNNs and their expressivity
and relative scalability.

Adaptivity Some of the earlier SSM variants, such as S4, were non-adaptive (or time-invariant),
making them very scalable through the use of convolution over the whole sequence using a pre-
computable constant convolution kernel. As [28] points out, input-independence ensures that the
expressivity of SSMs is upper-bounded by the circuit complexity class TC0, while some regular
languages require circuit complexity NC1 (it is widely assumed that TC0 != NC1). More recent
SSM architectures add adaptivity through various means, e.g., the Mamba recurrence is indirectly
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input-dependent via its time discretization factor ∆. Similarly, LRNNs such as RWKV-7 [64] or
DeltaProduct [65], and non-linear RNNs such as xLSTM [31], are adaptive through mechanisms
such as input-dependent gating factors. The transitions of our AUSSM component are directly
input-dependent, making our architecture fully adaptive (see Tab. 5).

Diagonality Another critical factor is whether the transition recurrence is diagonal or simultaneously
diagonalizable for different inputs. [11, Thm. 21] shows that such diagonal SSMs can recognize
solvable languages, but [28] again shows that such SSMs are contained within circuit complexity
class TC0, meaning they cannot recognize all regular languages, assuming TC0 != NC1. The upshot
is that diagonal transition matrices mean quicker or less memory-intensive computation for training
and inference, making it a very attractive architectural decision as employed by S4, Mamba, and
others. For this reason, we also choose to keep diagonality for our AUSSM and hybrid architecture,
and mainly compare performance between diagonal SSMs.

In contrast, the design of DeltaProduct or RWKV-7 attempts to create non-diagonal LRNN architec-
tures whose transition matrices are products of generalized householder matrices, which are diagonal
matrices plus an added rank-1 component. Such models can recognize all regular languages [25, 64],
albeit at the price of additional time and memory cost.

We also compare the performance of our architecture to that of xLSTM, which, as an extension of the
traditional LSTM, is an RNN but not an LRNN since the recurrence is non-linear in the hidden state.
Since LSTMs can recognize more than just regular languages [66], we use this as an upper-bound
comparison to a stronger model. In fact, while the authors do not formally prove that xLSTMs can
recognize all regular languages, the experimental results show strong performance on this class of
languages.

Eigenvalue range Within the realm of adaptive diagonal (or diagonalizable) SSMs in particular,
the eigenvalue range of the transition matrices plays a crucial role. This is because, as [11, Thm. 4]
proves, non-negative eigenvalues restrict diagonal SSMs to the class of star-free regular languages,
while negative eigenvalues allow for the recognition of non-star-free languages such as parity. [25]
point out that Mamba can be trivially adapted to have negative eigenvalues without additional
computational cost. However, negative eigenvalues alone are not enough to recognize all solvable
languages; complex eigenvalues are required, e.g., for solvable languages like mod n parity for
n > 2 [25, Thm. 2]. In non-diagonal LRNNs, multiplying generalized Householder matrices as in
DeltaProduct or RWKV-7 can yield eigenvalues with non-zero imaginary components, raising their
expressivity to include all solvable languages (and, indeed, all regular languages [65]).

In order to recognize all solvable languages with diagonal SSMs, we need to extend the eigenvalue
range to complex numbers. The simplest way to do this is to just use Mamba with complex hidden
states. This incurs additional overhead, however, because it increases the parameter count to include
all possible complex values. As we show in §E, in order to accept all solvable languages, we only
need to add SSM components with unitary complex eigenvalues, which is why we introduce AUSSM
components to Mamba, allowing the hybrid architecture to model all solvable languages with minimal
overhead. Additionally, while formally Mamba with complex values is just as expressive as our
architecture, our experiments showed that Mamba with complex eigenvalues fails to learn even
simple formal tasks that our hybrid architecture can perform with perfect accuracy, indicating that the
additional restriction to unitary values is indeed helpful for learning formal languages. See Tab. 5 for
a comparison of Mamba-like models with their relative advantages and disadvantages.

B Limitations of Non-Adaptive/Partially Adaptive SSMs

The expressivity of different classes of SSMs is defined by the types of dynamical systems and formal
languages they are able to simulate. Appendix E analyzes the formal language expressivity and
limitations of different classes of SSMs. In this section, we analyze expressivity related to different
kinds of dynamical systems. First, we show that in line with Figure 1, SSM expressivity can be
arranged in the order LTI real spectra ⊂ LTI complex ⊂ LTV partial ⊂ LTV. The models
that have higher expressivity can simulate the models lower in the expressivity scale. Since LTV w
unitary spectra cannot be arranged precisely in this scale, we show an example of a class of
multitimescale processes that a partial LTV model like Mamba cannot simulate in a fixed hidden state
and layer limits.
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Expressivity of Single Block SSMs The dynamical systems that can be simulated by single block
SSMs without non-linearities can be arranged in the order LTI real spectra ⊂ LTI complex ⊂
LTV partial ⊂ LTV.

Proof : For the proof, we start with the most general LTV SSM and show that the next lower class
SSM is a special case. We do the same for all the subsequent SSM classes in the expressivity chain.

The single block LTV SSM has the following discrete form:{
dx(t)
dt = exp(∆tAt) x(t) + ∆tBt u(t) ,

y(t) = Ct x(t) .

The next lower class of ssm: LTV partial has the following form{
dx(t)
dt = exp(∆tA) x(t) + ∆tBt u(t) ,

y(t) = Ct x(t) .

Note here that the ∆t is a scalar that varies with time, but A is a fixed matrix. This can be derived
as an instance of the LTV with At = ∆tA where the equivalence between the two holds only in the
case where the dimensionality of the SSM is 1. Similarly, the next lower class LTI complex has the
following form {

dx(t)
dt = exp(∆A) x(t) + ∆B u(t) ,

y(t) = C x(t) .

This is an instance of the LTV partial with ∆t = ∆, Bt = B and Ct = C, which means all the
matrices are time invariant. The final class LTI real spectra is an instance of LTI Complex
where the eigenvalues are further restricted to have 0 angle in the imaginary plane.

LTV is the most general class, but it is computationally infeasible to simulate the most general
case. The non-diagonalizability of general matrix classes requires performing a full O(n3) matrix
computation at each time step. Hence LTV w unitary spectra with simultaneously diagonalizable
unitary matrices is chosen as a principled middle ground. It is, however, not instantly apparent
how LTV w unitary spectra compares against LTV partial. To illustrate the difference, we
introduce an example of a multi-timescale process.

Multi-timescale features: A time-series u(t) ∈ R is said to have multi-timescale features if the
hidden state can be factorized into the following form:6

x(t+ 1) =

(
f(t) 0
0 g(t)

)
x(t) .

Where f(t) ∈ C, g(t) ∈ C are general complex-valued time-varying functions and f(t) ̸= cg(t)
for some constant c. That is, the timeseries exhibits at least two independent features denoting two
different timescales.

partial LTV SSMs in multi-timescale timeseries: partial LTV SSMs are not able to represent
multi-timescale features in data.

Proof : The proof is by contradiction. If partial LTV SSMs are able to solve multi-timescale

timeseries, the following
(
f(t) 0
0 g(t)

)
= ∆tA is true. Solving the system for A leads to a

constraint on f(t) = cg(t) where c is some constant. This is true only when one of the functions is a
constant multiple of the other, that is the two functions are dependent and have the same timescale
(with a possible constant factor difference).

LTV w unitary spectra SSMs in multi-timescale timeseries: LTV w unitary spectra SSMs
can represent multi-timescale features in data as long as the f(t), g(t) ∈ exp(iθ) where θ ∈ [−π, π].
f(t), g(t) can be independent.

Proof : We first substitute f(t) = exp
(
i θf (t)

)
and g(t) = exp(i θg(t)). The resulting dynamical

system has f(t) and g(t) as eigenvalues, which have unit magnitude themselves. This is the definition
of LTV w unitary spectra.

6The results trivially extend to systems with more than two dimensions
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To summarize, if f and g are independent (e.g., f(t) = t2, g(t) = t), then the partial LTV system
cannot represent the multi-timescale features in the hidden state. On the other hand, LTV w unitary
spectra imposes a weaker constraint where the only requirement is that f(t) and g(t) are constrained
to the unit circle in the imaginary plane; the timescales of the two variables can be independent.
Note 1. In the main text, when we say that AUSSM is a diagonal LTV system, we mean that AUSSM
is capable of LTV recurrence through its adaptive (input-dependent) recurrent matrix. For the more
general LTV recurrence, the recurrent matrix needs to have the capability for non-linear dependence
which AUSSM currently does not support.
Note 2. In this section, we showed that a single AUSSM block with a fixed model dimension and
hidden state size can represent functions that Mamba cannot represent with the same hyperparameters
(it may need a greater width or more layers for the same function). At first glance, this seems to
contradict the results shown in Tab. 5, which posit that Mamba with complex entries is as expressive
as our hybrid architecture. The explanation is that in the formal language expressivity analysis
in §3.1 and §E is concerned with the expressivity of the whole architecture class over any finite
parametrization, rather than a specific model parametrization. The two analyses, therefore, keep
different quantities constant: the expressivity analysis is about the existence of any finite instantiation
of the model class that realizes a given language, while the fixed-hyperparameter single-layer
measures relative capacity at constant size.

C AUSSM Derivation

We derive the AUSSM from a controlled and adaptive version of the skew-symmetric ODE used in
the jPCA procedure in computational neuroscience, given below. The skew-symmetric ODE is first
discretized using the Zero Order Hold procedure and then parameterized in polar coordinates. The
steps to obtain the final AUSSM formulation are provided below.{

dx(t)
dt = At x(t) +B u(t) ,

y(t) = C x(t) .
(9)

The above ODE is discretized following the Zero Order Hold procedure with a step size of ∆t (note
that the step size is also time varying like the recurrent matrix){

x(t) = exp(∆tAt) x(t− 1) + ∆tB u(t) ,

y(t) = C x(t) .
(10)

The convolution form of the above system can be derived from this recurrence as shown below
(assuming x(0) = 0)

y(1) = C∆1CBu(1) (11)
y(2) = C exp(∆2A2)∆1Bu(1) + ∆2CBu(2) (12)

... (13)

y(t) = C
t−1∑
k=1

(
t∏

l=k+1

exp(∆lAl)

)
∆kBu(k) + ∆tCBu(t) (14)

Note that without additional assumptions on A, the matrix exponential and the repeated products
cannot be simplified further, which can result in computationally inefficient approaches to compute
the output. We draw motivation from the use of structured matrices in efficient SSM implementations
and propose that At belongs to a class of matrices that are simultaneously diagonalizable with the
same basis. Let this diagonalizable basis be P .

y(t) = C
t−1∑
k=2

P

(
t−1∏

l=k+1

exp(∆lΛ(Al))

)
P−1∆kBu(k) + ∆tCBu(t) , (15)

where Λ(Al) is the diagonal matrix with the eigenvalues of Al on the diagonal. Now, the repeated
matrix product has a simplified form as shown below.

y(t) = CP
t−1∑
k=2

(
exp

(
t−1∑

l=k+1

∆l Λ(Al)

))
P−1∆kBu(k) + ∆tCBu(t) , (16)
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For a new set of B′ and C ′ such that C ′ = CP and B′ = P−1B, we get

y(t) = C ′
t−1∑
k=2

(
exp

(
t−1∑

l=k+1

∆l Λ(Al)

))
∆kB

′u(k) + ∆tC
′B′ u(t) , (17)

The above equation undergoes one additional simplification, which reveals the unitarity of the discrete
dynamical system. Since Al is a skew-symmetric matrix, the eigenvalues Λ(Al) are purely imaginary,
meaning the above equation simplifies further in the polar form of Al.

y(t) = C ′
t−1∑
k=2

(
exp

(
i

t−1∑
l=k+1

∆l ℑ(Λ(Al))

))
∆kB

′u(k) + ∆tC
′B′ u(t) , (18)

where i2 = −1 is the complex iota and ℑ(.) is the function that obtains the imaginary component of
a complex number. Since C ′ and B′ are also complex due to the multiplication with P , we use polar
forms for them too to finally obtain

(19)y(t) = RC exp(i θC)
t−1∑
k=2

(
exp

(
i

t−1∑
l=k+1

∆l ℑ(Λ(Al))

))
∆kRB exp(iθB)u(k)

+ ∆tRC exp(i θC)RB exp(i θB)u(t) .

To handle a d-dimensional input, this formulation is replicated d times for each input dimension.
For adaptivity, we use where Λ(∆lAl)j =

∑
r χjr ur(l) + χbias

j and ∆lj =
∑

r χ
∆
jr ur(l) + χ∆bias

j ,
We use the above formulation in our experiments and parameterize the following for learning:
RC , θC , RB , θB , χjr, χ

bias
j , χ∆bias

j , χ∆
jr.

D Eigenvalue Analysis

Lemma 3 (Exponential of a Skew-Symmetric Matrix is Orthogonal). Let A ∈ Rn×n be a real
skew-symmetric matrix, i.e., A⊤ = −A. Then the matrix exponential exp(∆A) is orthogonal for any
∆ ∈ R, i.e.,

exp(∆A)
⊤
exp(∆A) = I.

Proof. Let U = exp(∆A). Then,

U⊤ = (exp(∆A))
⊤
= exp

(
∆A⊤) = exp(−∆A),

since A⊤ = −A. Therefore,

U⊤U = exp(−∆A) exp(∆A) = exp(0) = I,

which shows that U is orthogonal.

Lemma 4 (Marginal Stability of Discrete-Time Dynamics). Let A ∈ Rn×n be a real skew-symmetric
matrix and define Φ = exp(∆A) for some ∆ > 0. Then all eigenvalues of Φ lie on the complex unit
circle. In particular, the discrete-time linear system

x(t) = Φx(t− 1)

is marginally stable.

Proof. The eigenvalues of a real skew-symmetric matrix A are purely imaginary, i.e., λj = iωj ∈ iR.
The eigenvalues of Φ = exp(∆A) are then

µj = exp(∆λj) = exp(i∆ωj),

which all lie on the complex unit circle since |exp(iθ)|= 1 for all θ ∈ R. Hence, the system exhibits
marginal stability.
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Lemma 5 (Norm Preservation under Skew-Symmetric Dynamics). Let A ∈ Rn×n be a real skew-
symmetric matrix, and let Φ = exp(∆A). Then for any x ∈ Rn,

∥Φx∥2= ∥x∥2.

Hence, the transformation does not amplify or diminish the norm of the state vector, preventing both
gradient explosion and vanishing during backpropagation through time.

Proof. Since Φ is orthogonal by Lemma 1, we have:

∥Φx∥22= (Φx)⊤(Φx) = x⊤Φ⊤Φx = x⊤x = ∥x∥22.

Taking the square root yields ∥Φx∥2= ∥x∥2.

Lemma 6 (Input-Modulated Rotation Frequencies via Skew-Symmetric Generator). Let A : R →
Rn×n be a smooth function such that A(u) is skew-symmetric for all u ∈ R. Then for each u ∈ R,
all eigenvalues of A(u) lie on the imaginary axis, and the eigenvalues of the discrete-time transition
matrix Φ(u) = exp(∆A(u)) lie on the complex unit circle.

Furthermore, the eigenvalues of A(u) depend continuously on u, and thus the angular frequency of
state-space rotation is smoothly and directly modulated by the input.

Proof. LetA(u) ∈ Rn×n be skew-symmetric for all u ∈ R, i.e.,A(u)⊤ = −A(u). It is a well-known
result from linear algebra that real skew-symmetric matrices have purely imaginary eigenvalues or
zero.

Let λj(u) ∈ C be an eigenvalue of A(u). Since A(u) is real and skew-symmetric, λj(u) = iωj(u)
for some ωj(u) ∈ R, and the eigenvalues come in complex-conjugate pairs if nonzero.

Now, consider the discrete-time transition matrix:

Φ(u) := exp(∆A(u)).

Because the exponential of a skew-symmetric matrix is orthogonal (by Lemma 1), Φ(u) is an
orthogonal matrix. The eigenvalues of an orthogonal matrix with determinant 1 lie on the complex
unit circle, i.e.,

|µj(u)|= 1 for all eigenvalues µj(u) of Φ(u).
Furthermore, the eigenvalues of Φ(u) are given by

µj(u) = exp(∆λj(u)) = exp(i∆ωj(u)),

so their arguments (i.e., angular velocities) are precisely modulated by the real-valued frequencies
ωj(u), which in turn depend on the input u.

To show that the rotational frequencies vary continuously with u, recall that the eigenvalues of a
smooth matrix function A(u) depend continuously on u, provided that A(u) has distinct eigenvalues
or that perturbations are small (which holds generically due to the structure of skew-symmetric
matrices). Since A(u) is assumed to be smooth, all ωj(u) vary continuously with u, and therefore so
do the corresponding angles ∆ωj(u) of the discrete-time rotation matrix.

E Formal Language Expressivity

Our formal expressivity analysis uses the setting and proofs of [11] as a starting point. That
is, we abstract away architectural details without loss of generality, and directly work with the
already discretized form of the SSM. We assume floating-point arithmetic where the precision is
logarithmically bounded in the sequence length, i.e., at most O(log n) bits of precision on inputs
of length n. Here, we briefly reiterate a somewhat abstract definition of our SSM to simplify the
expressivity proofs.
Definition 1 (SSM layer). A single SSM layer is a sequence-to-sequence map Rd → Rd, (ut) 7→ (yt)
for t ∈ [T ] for sequence length T . It is defined recurrently by

xt = At ◦· xt−1 +Bt (20)
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where ◦· is elementwise multiplication, x0 ∈ Cm with m = n · d, and A,B:Rd → Cm are smooth,
input-dependent maps with At = A(ut) and Bt = B(ut). Note that A already subsumes the
discretization variable ∆, which is itself a function of the input, as introduced in [9]. The output of
the layer is computed as

yt = ϕ(xt, ut) (21)

where
ϕ:Cm × Rd → Rd, (xt, ut) 7→ Mix1(ℜ(Mix2(xt, ut)), ut) (22)

Mix1 and Mix2 contain linear maps and a non-linearity (either silu or softplus).7 Note that in our
implementation, unlike [9], we do not apply normalization between the two Mix blocks but before
the input enters the layer (see Def. 4). For ease of notation, we subsume Ct into Mix2 without loss of
generality. Mix2 also usually contains a convolution of the input before the SSM recurrence, which
we ignore in expressivity analyses following [11, Remark 18].

Definition 2 (Mamba layer). A Mamba layer is an SSM layer where At and Bt, are input-dependent
and real-valued,8 and, additionally, At ∈ R+ is non-negative.

Definition 3 (AUSSM layer). An AUSSM layer is an SSM layer where Bt and Ct are fixed constant
functions (not input dependent) and At is input dependent, complex valued, and each entry has unit
magnitude, i.e.,

∀j ∈ [d], |At,j |=
√
ℜ(At,j)

2
+ ℑ(At,j)

2
= 1

Definition 4 (Full SSM). For a full SSM, we usually stack multiple layers (1, . . . , L) on top of each
other, and indicate the layer we mean by a superscript, e.g., x(ℓ)t is the hidden state at time t in layer
ℓ. The input to the first layer u(1)t is some embedding of the input of the full SSM computed by some
injective embedding function e : Σ → Rd, where Σ is the alphabet of possible input values at a single
timestep, and the input to layer ℓ ∈ [L] for ℓ > 1 is the normalized output of the previous layer ℓ− 1:

u
(ℓ)
t = Norm(y

(ℓ−1)
t ) (23)

We use RMSNorm for the Norm, defined by

RMSNorm(x) =
g ◦· x√

1
n

∑n
i=1 x

2
i

(24)

where x ∈ Rn and g ∈ Rd is a learned gain parameter. Importantly, like [9], our implementation
uses skip connections between consecutive layers, i.e., for

y(ℓ) = ϕ(xt, ut) + y(ℓ−1) (25)

The final layer applies another RMSNorm and then a final output function.

We now introduce some notions from automata theory that are necessary for our expressivity results.
Definition 5. A deterministic finite-state automaton (FSA) A is a tuple (Σ, Q, δ) where Σ is an
alphabet (finite, non-empty set), Q is a finite set of states, and δ : Q×Σ → Q is a transition function.
The transition function can be lifted from symbols to symbol sequences as

δ : Q× Σ∗ → Q, δ(q, ε) = q, δ(q,σ≤t) = (δ(q,σ<t), σt)

where ε is the empty string, Σ∗ is the Kleene closure over Σ, and we use boldface to mark sequences
of zero or more symbols from Σ∗.

The extended transition function δ forms a transformation monoid under composition, called the
transition monoid of the FSA.
Definition 6. A set-reset automaton is an FSA whose transition function maps all states to a single
state for each input symbol, that is, ∀σ ∈ Σ, ∃p ∈ Q s.t.

δ(q, σ) = p, ∀q ∈ Q

7Here, silu(x) = x
1+exp(−x)

and softplus(x) = x log (1 + exp(x))
8Note that in Mamba, Bt is directly a function of the input while At is input dependent through ∆, which is

itself a (non-linear) function of the input.
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Note that the transition monoid of a set-reset automaton is aperiodic [67].

Definition 7. A cyclic group automaton is an automaton whose transitions are permutations over
states, where every input symbol acts as some power of a fixed k-cycle with k = |Q|. That is, for every
symbol σ ∈ Σ, the symbol-specific transition map δσ : Q→ Q is a bijection, and at least one of the
symbols forms a cycle of order exactly k, i.e. for some a ∈ Σ, δka = id and δna ̸= id∀n ∈ [1, k − 1].
All other symbol-transition matrices are powers of the same k-cycle, i.e., ∀b ∈ Σ, δb = δna for some
n ∈ [0, k − 1], where δ0a = id.

The transition monoid of a k-cyclic group automaton is the cyclic group Ck [68].

We start by showing that our AUSSM architecture overcomes the limitation of most SSMs pointed
out in [11] by showing that it can perform modulo counting, and therefore, can simulate cyclic group
automata.

Lemma 1. For any k ∈ Z+, one can construct a single-layer AUSSM that counts modulo k, which
means AUSSMs can simulate arbitrary cyclic group automata.

Proof. Let A = (Σ, Q, δ) be a cyclic group automaton. Now we define the input alphabet of the
AUSSM to be Σ and choose its hidden dimension to be d = |Σ|. Let a ∈ Σ be the symbol whose
transition function δa has order k. Then we set the parameters of the AUSSM as follows: Let
B(u) = 0 ∀u = e(σ), σ ∈ Σ. Let A(e(a)) = exp(2πi/k). For each other symbol b ∈ Σ, we
know there exists m ∈ [0, k − 1] such that δb = δna , so we can set A(e(a)) = exp(2πin/k). Now,
there is a trivial isomorphism ψ between the values of x and the states of the FSA A: Just define
ψ: {exp(2πin/k) | n ∈ [k]} → Z/kZ, exp(2πin/k) 7→ n, which maps every hidden state to the
corresponding state of the automaton (arranged in the order of cycle traversal by δa). Now there are
n distinct possible hidden states which can be read out at logarithmic precision.

A note on numerical precision. Floating-point operations introduce rounding errors when com-
puting the exponential function and repeated products thereof. A single complex multiplication
introduces a relative error of at most

√
5u [69],9 where u is the unit roundoff (u = 2−25 for 32-bit

single and u = 2−53 for 64-bit double precision). This yields relative error bounds of
√
5 · 2−24

and
√
5 · 2−53 respectively. This means after N multiplications, the accumulated relative error is

approximately
√
5uN to the first order. Two adjacent kth roots of unity are separated by a 2π/k seg-

ment of the unit circle; by the chord theorem, the distance between them is ∆ = 2 sin(π/k) ≈ 2π/k.
Approximations start overlapping if the accumulated error surpasses ∆/2, which occurs when:

N ≥ ∆

2
√
5u

≈ π√
5uk

≈ 1.26× 1016

k
(26)

For example, with 64-bit double precision and a modulo counter as large as k = 106, it would take
over 12 billion tokens (N ≈ 1.26× 1010) for counts to become indistinguishable. This exceeds the
sequence length of most datasets currently used in practice and is an order of magnitude larger than
the human genome (≈ 3 × 109 base pairs). This means that whenever higher counters or longer
sequence lengths are required, one can simply switch to the next higher precision. Since bit-depth is
inversely proportional to the logarithm of u, we only require logarithmic precision in the sequence
length.

The second requirement for transcending the expressivity limits of common SSMs is the ability to
implement cascade products of FSAs (see [23, 67, 70] for more details on cascade products):

Definition 8. Let A1 = (Σ1, Q1, δ1),A2 = (Σ2, Q2, δ2) be FSAs such that Σ2 = Q1 × Σ1. Then
the cascade product A1 ◦ A2 is the FSA C = (Σ1, Q1 ×Q2, δc) with δc defined as

δc((q1, q2), σ) = (δ2(q1, (q2, σ)), δ1(q1, σ)) (27)

Here, we use tuples of states taken from the state sets of the component FSAs to denote the state of
the cascade. Intuitively, the state of the cascade at any given time is the combination of the states that
the component FSAs are in at that point.

9Assuming no underflow, overflow, or subnormal numbers.
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Note that for transitioning to the next state, A2 requires access to the state that A1 was in before
starting the current transition, meaning at time t, an FSA higher up in a cascade needs access to the
state the lower-level FSAs were in at time t− 1.

We will hence use the following crucial fact [11] used for constructing FSA cascade products in
Mamba SSMs:
Fact 2 (Sarrof et al. [11], Lemma 17). For any alphabet Σ there exists a single-layer Mamba SSM
such that the last-but-one input symbol can be read out from the hidden state at finite precision.

We will also need the following fact about our hybrid architecture, allowing us to disregard the
particular alternating ordering of layer types:
Note 3. We can always add an idempotent Mamba or AUSSM layer in the cascade without changing
the model’s behavior. This can be done by setting the output projection of the SSM block in question
to map everything to zero. Then the input to the next layer will just be the output of the last but one
layer (via the skip connection). This means that for any Mamba or AUSSM with a specific behavior,
there is a hybrid AUSSM+Mamba with the same behavior.

Now we have the necessary building blocks to show that our construction fulfills the main requirement
for increased expressivity, the ability to implement cascades of the two SSM layer types:
Lemma 2. An SSM consisting of interleaved Mamba and AUSSM blocks (hybrid Mamba+AUSSM)
can implement cascade products of automata simulated by Mamba SSMs and AUSSMs.

Proof. We want to show that the hybrid Mamba+AUSSM architecture with alternating Mamba
and AUSSM layers can implement cascade products of FSAs. In the following, we take a hybrid
Mamba+AUSSM to mean a stack of alternating Mamba and AUSSM layers, ignoring the initial
encoding and final normalization and output map. Without loss of generality, assume that the first
layer is always an AUSSM layer, and the last layer is always a Mamba layer (we can achieve this by
adding idempotent layers where necessary, see Note 3).

Also note that, by Note 3, any Mamba SSM and any AUSSM can be converted to an equivalent
hybrid Mamba+AUSSM.

It remains to be shown that a hybrid Mamba+AUSSM can simulate the cascade of two FSAs
simulated by hybrid Mamba+AUSSMs. This is simply an extension of [11, Lemma 19] to our hybrid
Mamba+AUSSM architecture.

Let A1 = (Σ1, Q1, δ1),A2 = (Σ2, Q2, δ2) be FSAs such that Σ2 = Q1 ×Σ1. Assume that there are
hybrid Mamba+AUSSM models S1, S2 that map input sequences (x1, x2, . . . , xT ) to the sequences
of states under A1, A2, at logarithmic precision.10

Let Sc be the hybrid Mamba+AUSSM we want to simulate the cascade A1 ◦A2. The lower layers of
Sc are just the layers of S1. We add d dimensions that just copy the input via a skip connection. We
then add a Mamba layer (preceded by an idempotent AUSSM layer) that reads out the second-to-last
output of S1 in new dimensions (by Fact 2), while again forwarding the input via the skip connection.
Here, we also add a dummy dimension that is always 1, which avoids normalization, making different
inputs indistinguishable. Now we have the input and the second-to-last output of S1, corresponding
to the last state of A1. Now the remaining layers of Sc are just those of S2, which take this input and
compute the transition and state of A2, again adding dimensions such that the state of A2 is separate
from the state of A1 and the input to the overall SSM. Now, Sc maps each w to the state sequence
under A1 ◦A2, again at logarithmic precision. This can be inductively extended to a cascade product
of arbitrarily many FSAs.

Fact 3 (Consequence of Krohn-Rhodes Theorem [23] and the decomposition series of groups [27]).
Any solvable language is recognized by a cascade of set-reset and cyclic group automata.
Theorem 2. Hybrid Mamba+AUSSM can recognize any solvable language, that is, any regular
language whose syntactic monoid does not contain non-solvable subgroups.

Proof. By Lem. 1, an AUSSM can simulate cyclic group automata. By [11, Lem. 19], a Mamba
SSM can simulate set-reset automata. By Lem. 2, hybrid AUSSM+Mamba can simulate a cascade

10Note here we implicitly assume a bijection exists between intervals on Rd (the input at time t, xt) and the
alphabet symbols of the relevant FSA.
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Figure 3: Space Complexity of SSM formulations: The figure illustrates an example convolution
kernel for an SSM provided with four inputs at different timesteps (ut). The convolution is visualized
as a matrix multiplication operation over the input sequence. A. In LTI SSMs, the convolution kernel
(K1,K2,K3,K4) is precomputed and applied to the input at different timesteps to obtain the output.
B. In general LTV SSMs with time-varying recurrence, the convolution kernel has O(L2) elements,
each unique to the input and output being considered at each timestep. The use of convolution in
this scenario leads to quadratic complexity in space (akin to the transformers). C. In the separable
convolution case, the quadratic matrix of the general SSM can actually be obtained by the outer
product between ft for each timestep and the cumulative sums of a function gk independent of t. D.
Computing the convolution kernel can be achieved in just an additional O(2L) space.

of automata simulated by Mamba and AUSSM SSMs. Together with Fact 3, this means that hybrid
AUSSM+Mamba can recognize any solvable language.

The importance of counting for other tasks. Note that the ability to count modulo k does not just
allow SSMs to model regular languages but also to approximate languages higher up on the Chomsky
hierarchy. For example, it allows the recognition or generation of bounded Dyck languages, i.e., the
correct parenthesization up to a certain depth (see [71] in the case of RNNs). Even context-sensitive
language tasks can benefit from counting: For instance, sorting a sequence (the bucket sort task in §5)
can be done by maintaining counters for all alphabet symbols and then outputting the symbols in
order, according to their count (see counting sort and direct-address tables [72, Chapters 8 and 11]).
Note that this works as long as the number of occurrences of any given symbol is smaller than the
highest count expressible by the SSM, e.g., k when using modulo k counting.

F Complexity Analysis

SSMs leverage logarithmic complexity algorithms like FFT and parallel prefix sum to compute the
convolution. Prior to this, the convolution kernel needs to be pre-computed and stored, which is
the main bottleneck in computing the convolution. We will show below the space complexities
for computing and storing the convolutions. Further, we show how the quadratic space complexity
blowup of pure LTV systems can be managed using the separable convolution framework.
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F.1 SSM Convolution

The convolution operation of a general SSM is given by the following

y(t) =
∑
k≤t

Ct (At−1...Ak+2Ak+1)Bk u(k) (28)

There are two cases for the above convolution we consider:

Linear Time Invariant (LTI) : In the LTI case, the matrices in the SSM are constant over time,
and the following holds

y(t) =
∑
k≤t

CAt−1−kB u(k) (29)

Now, the convolution kernel K(t, k) = C At−1−k B can be precomputed, and since At−k−1 is
common for many settings of t and k for which their difference is constant, the weights can be shared.
In fact, there are onlyO(L) unique entries in the convolution kernel (see Figure 3 A). The other entries
are duplicates of these entries. Once the convolution kernel is obtained, efficient algorithms like FFT
or Parallel Scan can be used to compute the convolution in O(logL) time for each dimension, for a
total of O(L log(L)) time complexity. Therefore, the total time complexity for computing the kernel
is O(L logL) with a space complexity of O(L).

Linear Time Varying (LTV) : In the LTV case, the matrices in the SSM can vary over time. This
introduces additional complexity in representing the convolution kernel in O(L2) space, matching
the quadratic complexity of computing self-attention in transformers. The reason for the quadratic
complexity is that the entries in the convolution kernel K(t, k) are unique for each setting of t, k. In
the case of separable convolution kernels (e.g, the case of simultaneously diagonalizable matrices),
the resulting K(t, k) matrix has a further rank-1 factorization (this is discussed in detail in the main
text). This factorization enables the convolution kernel to be represented with only an additional
O(2L) memory, where the 2 factor comes from each vector element in the outer product.

F.2 Parallel Scan

The reason for precomputing the convolution kernel is that we can apply one of the fast convolution
algorithms - FFT or parallel scan. In our case, we perform the parallel prefix sums for computing
cumulative sums. Here, we analyze the time and space complexity of the parallel prefix sum (scan)
algorithm, where the goal is to compute the prefix sums of an array A = [a0, a1, . . . , aL−1] such that
the output array S satisfies

Si =

i∑
j=0

aj for 0 ≤ i, j < L. (30)

We assume a parallel computation model such as the PRAM (Parallel Random Access Machine) or a
shared-memory model, and we are given P processors.

The parallel prefix sum algorithm typically consists of two main phases:

1. Upsweep phase (Reduction): Build a binary tree over the array and compute partial sums
from leaves to the root.

2. Downsweep phase: Propagate prefix sums from the root back down the tree to compute the
final result.

Both phases traverse a binary tree structure of height log2 L, assuming for simplicity that L is a
power of two. Each level of the tree can be processed in parallel.

Work. The total number of operations (work) in both phases is:
W (L) = (L− 1)︸ ︷︷ ︸

upsweep

+ (L− 1)︸ ︷︷ ︸
downsweep

= 2L− 2 = O(L). (31)

This is the same amount of work as the sequential prefix sum algorithm, which confirms that the
parallel algorithm is work-efficient.
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Time Complexity with P Processors. Using Brent’s Theorem (work-span model), the parallel
time TP on P processors is bounded by:

TP ≤ W (L)

P
+ S(L) = O

(
L

P
+ logL

)
. (32)

This means that when the number of parallel processors grows in the sequence length according to
P = Θ(L/logL), the parallel prefix sum runs in optimal time O(logL).

29



Space Complexity The space used by the algorithm includes:

• The original input array A, of size L.

• An auxiliary array to store intermediate results, typically of size L.

• Additional temporary variables per processor (constant per processor).

Hence, the total space complexity is:

O(L+ P ) = O(L) (since typically P ≤ L). (33)

It is important to note that although the algorithm requires additional O(L) space for the auxiliary
variables, the CUDA kernel implementation hides these variables within the multiprocessor registers
and shared memory. As a result, this complexity does not show up in the plots of either Mamba
or auSSM. Existing GPU hardware for the 2080ti enables parallel processing of sequences up to
L = 2048. For longer sequences, the input is chunked into batches of L = 2048.

G Implementation

The theoretical analysis of the separable kernel formulation shows that the adaptive kernel can be
implemented in only an additional linear space. However, the factor associated with the linear space
is bdn, where b is the batch size, d is the input dimension, and n is the hidden state dimension. In this
section, we first show a PyTorch implementation of the AUSSM kernel and Mamba kernel that can
be easily coded, with the higher cost of the constant factors. Next, we show how we implement the
AUSSM kernel in practice so that the additional complexity is hidden within the computations of a
CUDA kernel.

G.1 PyTorch

One of the most useful aspects of the theory of separable convolutions is that there is a relatively
efficient PyTorch formulation for computing SSM kernels, even when the SSM is partially/fully
time varying. However, an additional constant-time penalty will be incurred. Nevertheless, the
existence of such an implementation will still be interesting as it can enable fast prototyping of LTV
SSMs, without dealing with the complexity of building a CUDA kernel. Here, we show two PyTorch
implementations of the partial LTV Mamba kernel and the separable AUSSM kernel.

1 def mamba_ssm(u, dt , A, B, C, D, z):
2 """
3 params:
4 u: input Tensor (b,d,l)
5 dt: Delta Tensor (b,d,l)
6 A: Tensor (n)
7 B: Tensor (b,n,l)
8 C: Tensor (b,n,l)
9 D: Tensor (d)

10 z: Tensor (b,d,l)
11 Returns:
12 y: (b, d, l)
13 """
14 A = einsum(A, dt, "n,bdl ->bdnl")
15 G = torch.cumsum(axis =1)
16

17 g = einsum(exp(-G), dt, B, u, "bdnl ,bdl ,bnl ,bdl ->bdnl"
18 g = torch.cumsum(g, axis=-1)
19 f = einsum(C, exp(G), "bnl ,bdnl ->bdnl")
20

21 y = einsum(f, g, "bdnl ,bdnl ->bdl") + D * u
22 y = y * F.silu(z)
23

24 return y
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The implementation of Mamba using the separable kernel formulation has fewer than 10 lines of
PyTorch code. The PyTorch implementation of AUSSM is similar, except now we have to account
for the time-varying A matrix, and B and C are relaxed.

1 def aussm(u, dt, chi , B, C, D, z):
2 """
3 params:
4 u: input Tensor (b,d,l)
5 dt: Delta Tensor (b,d,l)
6 chi: adaptivity matrix (d,n,d)
7 B: Tensor (n)
8 C: Tensor (n)
9 D: Tensor (d)

10 z: Tensor (b,d,l)
11 Returns:
12 y: (b,d,l)
13 """
14 A = einsum(chi , u, "dnr ,blr ->bldn")
15 A = einsum(dt , A, "bdl ,bldn -bldn")
16 G = torch.cumsum(axis =1)
17

18 g = einsum(exp(-G), dt, B, u, "bdnl ,bdl ,n,bdl ->bdnl"
19 g = torch.cumsum(g, axis=-1)
20 f = einsum(C, exp(G), "n,bdnl ->bdnl")
21

22 y = einsum(f, g, "bdnl ,bdnl ->bdl") + D * u
23 y = y * F.silu(z)
24

25 return y

In this implementation, Mamba and PyTorch have the same space and time complexity as the hidden
state is realized for both, albeit at only a fraction of the cost.

G.2 CUDA Kernel

In pure PyTorch, the additional complexity of realizing the hidden state is unavoidable, even though
the computation does not have quadratic memory costs. The additional complexity of realizing
the hidden state can be avoided by creating a CUDA kernel for the AUSSM equation. We use the
following equation for the AUSSM, which we introduced in the main text:

yti = ℜ

∑
k≤t

∑
j

Cj exp

i
∑
l≤t

θAlij

 ∆kiBj

exp
(
i
∑

l≤k θAlij

) ui(k)
 . (34)

Each thread of the CUDA implementation computes the array inside the nested summation, which
results in O(L) memory requirement for storing each of the variables (A, f, g) for the forward pass.
These variables are not realized at the same time in the GPU memory, but in registers within the
streaming multiprocessors (SM), each processor holding 4 to 16 items of each array. For the 2080Ti
GPU, we ran the CUDA kernel on, the allowable maximum sequence length that can be processed by
the kernel was 2048, after which the register and shared memory costs start to show up. We found
that this sequence length is ideal for the hardware and tasks we tested on. The separable convolution
trick is not restricted by the hardware and can scale well for GPUs that can be released in the future
with larger registers and shared memory resources.

Backpropagation: For the CUDA kernel, we implemented a custom backpropagation operation.
Implementing backpropagation requires the variables computed during the storage to be stored, which
creates issues because the reason we are writing the CUDA kernel is so that we do not have to realize
the memory-intensive hidden state. We therefore recompute the forward pass during backpropagation.
The low complexity of implementing the AUSSM in CUDA means the recomputation does not incur
a heavy penalty.
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Table 6: Best Hyperparameters.
Task Group Task Layers d n weight decay learning rate

Algorithmic

repetition ma 64 32 0.0 0.01
bucket sort am 64 32 0.0 0.01

majority count ma 64 32 0.1 0.01
majority ma 64 32 0.1 0.01

solve equation ma 64 32 0.0 0.01
mod arith am 16 8 0.0 0.01

mod arith wo bra ma 8 16 0.0 0.01
cycle nav ma 16 8 0.0 0.01

parity ma 16 8 0.0 0.01

Timeseries
Classification

Heartbeat ma 64 64 0.0 0.0001
SCP1 amma 16 128 0.0 0.001
SCP2 ma 16 128 0.0 0.0001

Ethanol ammama 16 64 0.001 0.00001
Motor ma 16 128 0.0 0.0001
Worms amma 16 16 0.0 0.001

Timeseries
Regression

weather ma 16 128 0.0 0.001

H Experiments

We conduct three sets of experiments: (1) to evaluate the time/memory complexities of the different
AUSSM implementations, (2) to evaluate the performance of AUSSM in algorithmic tasks enabling
insights into the expressive power, and (3) to evaluate real-world performance implications in a
range of long time series benchmarks. For each of the tasks involving training models (2 and 3), we
perform two pipeline processes to obtain the final test accuracies. The first pipeline is the training
and model selection pipeline with only the training and validation sets that are preselected based
on the same criteria used by prior literature. The second pipeline is the test pipeline and is entirely
separate and performed starting 10 days prior to paper submission to avoid model selection based on
the test results. The classification tasks are evaluated using the scaled test accuracy metric, where the
obtained accuracy values are scaled with respect to the baseline performance of a uniform random
distribution, as shown below.

scaled accuracy score =
test accuracy score − baseline accuracy score

1− baseline accuracy score

All the models were run in a supercomputing cluster, where we used 40 2080Ti GPUs for all except
the dataset Eigenworms dataset that required higher memory. This is the lowest GPU available in the
cluster, with at least a CUDA compute of 7.5 required to run the Mamba and AUSSM CUDA kernels.
For a larger memory Eigenworms workload, we used the L4 GPU, which has a VRAM of 23GB.
Higher VRAM GPUs were available in the cluster, but they were in high demand and unnecessary, as
our optimized CUDA kernel was able to handle even the large-scale tasks in modest hardware.

H.1 Scalability Evaluation

To evaluate scalability in a fair manner, we report only the time spent in computations, ignoring
the latencies associated with moving variables between the GPU and the CPU. This provides a fair
evaluation of the algorithmic performance. 5 runs are used to warm up the GPU before starting the
evaluation to remove transient start-up effects. The run-time values are averaged over 50 runs, where
each run computes a forward and backward pass for each of the implementations. The peak memory
used during each run is also similarly recorded and averaged for each of the 50 runs.

H.2 Time Series benchmark

For time series classification and regression benchmarks, we follow the train-validation protocol for
model selection, following prior works on the benchmark. For testing, we modified the procedure
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as the five arbitrary random seeds used to evaluate test performance in prior works may introduce
unwanted biases due to the low number of random samples. Also, prior works used JAX for
implementations, while we used PyTorch, and the random seed does not create the same train-
validation-test sets due to differences in the pseudorandom number generators. We thus decided
to evaluate on train-validation-test splits created with 20 different seeds. We anticipated that the
higher samples would help in providing a better estimation of the test accuracy than what the five
arbitrary seeds provide. For each task, we performed a hyperparameter search over the following grid:
d ∈ {16, 64, 128}, n ∈ {16, 64, 128}, learning rate ∈ {0.00001, 0.0001, 0.001}, and five different
seeds for model selection. The model hyperparameters with the highest mean validation accuracy are
chosen for evaluation in the test set.

H.3 Algorithmic Tasks

For algorithmic tasks, we used the results from [31] for comparing against baseline models. We used
a grid search for hyperparameter tuning with a grid search over d ∈ {8, 16, 32, 64}, n ∈ {8, 16, 32},
weight decay ∈ {0.0, 0.001, 0.01}, learning rate in {0.0001, 0.001, 0.01} and five seeds. The batch
size was fixed at 256. For pure AUSSM blocks, we tested networks with a depth of 2, 4, and 6. For
hybrid AUSSM blocks, we tested all possible 2-block configurations of Mamba (represented as m)
and AUSSM blocks (represented as a) - {ma, am, mm, aa}. For each of the evaluated algorithmic tasks,
we randomly sampled 10000 samples from a train set up to length-40 sequences. The validation set
is sampled independently from 40-256 sequence lengths and had 1,000 samples. The test set had
10,000 samples from sequences of up to 256 sequence lengths.

The tasks use the same vocabulary size and configuration used in [31]. Some samples from the tasks
are shown below as a timeline. Here, the mask is applied to the output to determine the output of
interest for computing the loss and output.
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1 Task : r e p e t i t i o n
2 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
3 | t ime | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
4 |−−−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−|
5 | i n p u t | 3 | 5 | 0 | 7 | 3 | ACT | 3 | 5 | 0 | 7 | 3 |
6 | o u t p u t | 5 | 0 | 7 | 3 | ACT | 3 | 5 | 0 | 7 | 3 | PAD |
7 | mask | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 |
8 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
9

10 Task : b u c k e t s o r t
11 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
12 | t ime | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
13 |−−−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−|
14 | i n p u t | 3 | 5 | 0 | 7 | 3 | ACT | 0 | 3 | 3 | 5 | 7 |
15 | o u t p u t | 5 | 0 | 7 | 3 | ACT | 0 | 3 | 3 | 5 | 7 | PAD |
16 | mask | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 |
17 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
18
19 Task : m o d a r i t h m e t i c w o b r a c e s
20 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
21 | t ime | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
22 |−−−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−|
23 | i n p u t | 0 | * | 2 | − | 6 | − | 7 | − | 0 | = | 5 |
24 | o u t p u t | * | 2 | − | 6 | − | 7 | − | 0 | = | 5 | PAD |
25 | mask | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
26 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
27
28 Task : c y c l e n a v
29 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
30 | t ime | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
31 |−−−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−|
32 | i n p u t | +1 | STAY | +1 | −1 | +1 | −1 | −1 | −1 | +1 | 0 | PAD |
33 | o u t p u t | STAY | +1 | −1 | +1 | −1 | −1 | −1 | +1 | 0 | PAD | PAD |
34 | mask | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
35 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
36
37 Task : m o d a r i t h m e t i c
38 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
39 | t ime | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
40 |−−−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−|
41 | i n p u t | ( | ( | 3 | − | 3 | ) | − | 4 | ) | = | 3 |
42 | o u t p u t | ( | 3 | − | 3 | ) | − | 4 | ) | = | 3 | PAD |
43 | mask | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
44 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
45
46 Task : s o l v e e q u a t i o n
47 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
48 | t ime | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
49 |−−−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−|
50 | i n p u t | x | = | ( | 2 | + | 1 | ) | ACT | 3 | PAD | PAD |
51 | o u t p u t | = | ( | 2 | + | 1 | ) | ACT | 3 | PAD | PAD | PAD |
52 | mask | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
53 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
54
55 Task : p a r i t y
56 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
57 | t ime | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
58 |−−−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−|
59 | i n p u t | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
60 | o u t p u t | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
61 | mask | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
62 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
63
64 Task : m a j o r i t y c o u n t
65 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
66 | t ime | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
67 |−−−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−|
68 | i n p u t | 45 | 56 | 51 | 43 | 51 | 34 | 10 | 46 | 54 | 44 | 56 |
69 | o u t p u t | 56 | 51 | 43 | 51 | 34 | 10 | 46 | 54 | 44 | 56 | 2 |
70 | mask | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
71 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
72
73 Task : m a j o r i t y
74 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
75 | t ime | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
76 |−−−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−|
77 | i n p u t | 45 | 56 | 51 | 43 | 51 | 34 | 10 | 46 | 54 | 44 | 56 |
78 | o u t p u t | 56 | 51 | 43 | 51 | 34 | 10 | 46 | 54 | 44 | 56 | 51 |
79 | mask | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
80 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
81
82 Task : s e t
83 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
84 | t ime | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
85 |−−−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−+−−−−−−|
86 | i n p u t | 3 | 5 | 0 | 7 | 3 | ACT | 0 | 3 | 5 | 7 | PAD |
87 | o u t p u t | 5 | 0 | 7 | 3 | ACT | 0 | 3 | 5 | 7 | PAD | PAD |
88 | mask | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
89 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We make the following claims in the abstract: (1) AUSSMs are maximally
expressive in the class of diagonal SSMs - proved in Section 3.1. (2) Separable convolution
kernel formulation enables scalability. Theoretical exposition in Section 4 and plots in
Figure 2. (3) Unitary properties analyzed in Section 3.1. (4) The ability to solve a general
class of regular languages - experimental validation in Table 1. (5) Competent performance
on real-world benchmarks in Table 2, 3.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The sufficient conditions for applying the separable convolution formualation
is detailed in Section 4. The proofs in Section 3.1 discusses related works and the associated
assumptions used by them, which we implicitly assume.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Short descriptions of the methodology is provided in the main text along
with the discussion of the results in Section 5 where the related work that used identical
experimental patterns are also discussed. More detailed descriptions are in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code is made available as part of the supplementary information. We use
data that is publicly available except for algorithmic tasks. For these tasks, we release the
dataloaders along with the code. The code will be made public following the publication of
the manuscript.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Short form descriptions of experimental procedure are in the main paper.
Long-form details of the precise hyperparameter tuning protocol and train-validation-test
procedure are in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: Standard Deviations are reported alongside the Long Time series benchmark.
The algorithmic tasks do not contain standard deviations, as this is a synthetic benchmark.
For weather, we follow prior work and do not report standard deviation in the table; the
standard deviation we obtained is 0.0173.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Resources, including the type of graphics card and the available VRAM, are
detailed in the experiments. Time of execution and further details of the compute resources
are in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers, CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research introduces a new computational model, and this does not use
human subjects for the experiments. We do not create any data and use only publicly
available datasets or standard synthetic benchmarks. There are no societal concerns we are
aware of, as this is a relatively small-scale study on a computational research question.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

38

https://neurips.cc/public/EthicsGuidelines


• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The study is performed and impacts only the academic community interested
in conducting further research in SSMs. The work is primarily foundational in creating a
new computational algorithm for existing models.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper uses publicly available data that is identified as risk free and typically
used in conducting academic research.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The code and data are publicly released as open source software. the code
bases we used for compiling our code is attributed to the respective authors.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: A README is available on how to install, test and use the CUDA kernel we
release.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: we do not use this experimental protocol.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The experimental we do does not use human subjects and do not require IRB
approval.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLM was not used in formulating the research. Only use of LLMs was in
editing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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