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Automatic Sleep Scoring from a Single Electrode 1

Using Delay Differential Equations 2

Claudia Lainscsek, Valérie Messager, Adriana Portman, Jean-François Muir, 3

Terrence J. Sejnowski, and Christophe Letellier 4

Abstract Sleep scoring is commonly performed from electroencephalogram 5

(EEG), electrooculogram (EOG), and electromyogram (EMG) to produce a so- 6

called hypnogram. A neurologist thus visually encodes each epoch of 30 s into one 7

of the sleep stages (wake, REM sleep, S1, S2, S3, S4). To avoid such a long process 8

(about 3–4 hours) a technique for automatic sleep scoring from the signal of a single 9

EEG electrode located in the C3/A2 area using nonlinear delay differential equations 10

(DDEs) is presented here. Our approach considers brain activity as resulting from 11

a dynamical system whose parameters should vary according to the sleep stages. 12

It is thus shown that there is at least one coefficient that depends on sleep stages 13

and which can be used to construct a hypnogram. The correlation between manual 14

hypnograms and the coefficient evolution is around 80%, that is, about the inter-rater 15

variability. In order to rank sleep quality from the best to the worst, we introduced 16

a global sleep quality index which is used to compare manual and automatic sleep 17

scorings, thus using our ability to state about sleep quality that is the final goal for 18

physicians. 19

1 Introduction 20

Up to 2007, polysomnographic recordings were scored into sleep stages according 21

to the rules introduced by Rechtschaffen and Kales [19] which are mainly based on 22

a spectral analysis. The scoring, accomplished by well-trained neurologist, consists 23

in scoring all 30 s epochs into one of the six stages of vigilance, namely awakeness, 24
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rapid eyes movement sleep (REM), and sleep stages S1, S2, S3, and S4. RK rules 25

were recently modified to overcome the inter-rater variability ([11]). The most 26

important change was that stages 3 and 4 merged into a single stage, named slow- 27

wave sleep or N3. In spite of that, recent studies only showed slight improvements 28

with the new rules ([6]) with an inter-rater agreement slightly greater than 72% ([3]). 29

Automatic sleep scoring techniques are thus welcome. Most of the computer- 30

assisted scoring techniques stages were based on RK rules ([10, 12, 18]). In fact, 31

most of them try to reproduce what is done by neurologists and which can lead 32

to an overall epoch-by-epoch agreement of 80%, and require a quite complex 33

decisional tree (see Fig. 2 in [2]). With the emergence of “chaos theory,” recurrence 34

plots quantifiers, Lyapunov exponents, or correlation dimension were used to 35

obtain hypnograms with an overall agreement which was rarely greater than 60 or 36

70% ([23]). 37

Neural networks were also used to distinguish different features exhibited in 38

the spectral domain but were not able to distinguish more than the REM sleep 39

from non-REM sleep ([9]). Another technique was correctly scoring sleep stages 40

but required two EEG channels, one horizontal electrooculogram channel and one 41

chin electromyogram channel ([20]). An automatic sleep classification was able to 42

distinguish wake, slow-wave sleep and rapid eye movements sleep stages ([22]), 43

but a specific sensor, a head accelerometer, was required and must be added to 44

conventional sensors. 45

Our aim is to develop a reliable automatic technique using a single EEG signal for 46

scoring hypnograms. The subsequent part of this paper is organized as follows. In 47

Sect. 2 the pool of patients which were recorded is described. Section 3 is devoted to 48

our automatic sleep scoring technique and to a new global sleep quality index used 49

to rank a set of hypnograms. In Sect. 4 the results are presented and Sect. 5 gives a 50

conclusion. 51

2 Patients 52

This retrospective observational study was conducted at the sleep laboratory at 53

the medical university hospital Intensive Care Unit in Rouen. We selected 38 54

recordings, but only 35 were associated with a reliable sleep scoring. These patients 55

were long-term ventilated for chronic respiratory failure and grouped into two 56

types. The first type corresponds to an obesity hypoventilation syndrome (OHS) 57

commonly seen in severely overweight people who fail to breathe normally resulting 58

in low blood oxygen levels and high blood carbon dioxide (CO2) levels. Many 59

of these patients have increased upper airway resistances during sleep (obstructive 60

sleep apnea). This induces a significant amount of wake after sleep onset (WASO) 61

leading to abnormal daytime sleepiness. This disease puts strain on the heart, 62

possibly resulting in heart failure, leg swelling, and various other related symptoms. 63

The second group of respiratory failure, considered here, is associated with chronic 64

obstructive pulmonary disease (COPD). This refers to small airway obstructions 65
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Table 1 Main clinical
characteristics of the patients
(n D 34)

t2.1Demographics and respiratory parameters Mean (SD)

t2.2Age (year) 64.5 (11.7)

t2.3Male:female 24:11

t2.4Body mass index (kg.m�2) 42.0 (10.5)

t2.5PaO2 (cmH2O) 9.5 1.1

t2.6PaCO2 (cmH2O) 5.8 (0.9)

Normal values: (10:7 < PaO2 < 12:0) cmH2O, PaCO2 �
5:3 cmH2O, (18:5 < BMI < 25) kg.m�2 and obesity is
defined by BMI> 30 kg.m�2

and emphysema, two commonly coexisting pulmonary diseases in which the 66

airways progressively narrow inducing shortness of breath. In these patients, the 67

airflow limitation is usually nonreversible when treated with bronchodilators and 68

progressively becomes more and more severe. One efficient treatment is to put these 69

patients under noninvasive mechanical ventilatory assistance. In the present case, all 70

patients were ventilated with the bilevel ventilator RESMED VPAP III. All patients 71

included in this study were in stable condition, as assessed by clinical examination 72

and arterial blood gases. 73

Main characteristics of the thirty-five patients for which the sleep was scored 74

during one night under mechanical ventilation are reported in Table 1. Twenty 75

patients (57%) had OHS and 15 patients (43%) had COPD. Thirteen patients (38%) 76

were diagnosed with obstructive sleep apnea syndrome (defined as more than 10 77

apneas per hour). Upon study inclusion, the patients were ventilated for a few 78

months. Nineteen patients (56%) were hypercapnic (PaCo2 > 5:6 cmH2O). 79

3 Method 80

3.1 Automatic Sleep Scoring 81

A nonlinear delay differential equation has the general form 82

Px D a1 x�1 C a2 x�2 C a3 x�3 C � � � C ai�1 x�n C ai x2
�1

C aiC1 x�1 x�2

CaiC2 x�1 x�3 C � � � C aj �1 x2
�n

C aj x3
�1

C aj C1 x2
�1

x�2 C : : : � � � C al xm
�n

(1)

where x D x.t/ and x�j D x.t � �j /. In this general form, the DDE has n delays, 83

l monomials with their corresponding coefficients ai , and a degree of nonlinearity 84

equal to m. In the subsequent part of this paper, we will define a k-term DDE as an 85

equation with only k < l monomials selected from the right-hand side of the general 86

form (1). As for any global modeling technique, there is a significant improvement 87

of capturing main characteristics of the underlying dynamics from observed data by 88

carefully selecting the structure of the DDE model ([1, 14–16]). The minimal mean 89
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squared error is used for this process. By structure selection, we mean retaining 90

only monomials in the DDE that have the most significant contribution to classify 91

the data. An equally important task is to select the right Time-delays, since linear 92

terms are directly related to the fundamental timescales and nonlinear terms to the 93

nonlinear couplings between them ([16]). This can be performed by using a genetic 94

algorithm ([15]) or by an exhaustive search for the best model among the general 95

form with n D 2 and m D 3 resulting in l D 9 monomials as performed in [16]. 96

Here only models with up to three terms were considered (see Table 2 in [16]). 97

The variable x corresponds to the signal provided by the electrode located in the 98

C3/A2 area of the scalp. We ran a genetic algorithm to minimize the least square 99

error of 30 s data windows to select the best models and delays for each 30 s window 100

([8, 15]). For 95% of the data windows (corresponding to the 35 patients), the four 101

models 102

Px D a1 x�1 C a2 x�2 C a3 x2
�1

I (2)

103

Px D a1 x�1 C a2 x�2 C a4 x�1 x�2 I (3)

104

Px D a1 x�1 C a2 x�2 C a6 x3
�1

I (4)

105

Px D a1 x�1 C a2 x�2 C a7 x2
�1

x�2 I (5)

were selected as well as delays between 1 ıt and 4 ıt with ıt D 1
64

s. Among 106

these four models, model (5) is the best to distinguish wake, REM, and S1 from the 107

sleep stages S2, S3, and S4 (see left panel from Fig. 1). Delay �1 D 1 is useful to 108

distinguish wake, S2, S3, and S4 from REM and S1 (right panel from Fig. 1). Delay 109

�2 D 3 allows to distinguish wake from sleep stages. Thus, combining model (5) 110

with delays �1 D 1 and �2 D 3 provides the model with the most discriminative 111

ability. Among the three coefficients of model (5), parameter a2 was found to be the 112

most correlated (r D 0:95) to the manually scored hypnogram, as exemplified in 113

Fig. 2 in the case of patient 15. We then used this model and this coefficient to score 114

the sleep for our 35 patients. 115

It was then necessary to convert the a2-time series which corresponds to the time 116

evolution of a real number sampled at 0.1 Hz (one point per 10 s) into a sequence of 117

integers from 1 (stage S1) to 6 (awake). This is the tricky part of our technique. In 118

the case of patient 15, we got an automatically scored hypnogram which was quite 119

close to the manually scored one (Fig. 2b). 120

3.2 Assessing the Sleep Quality 121

Since patients with chronic respiratory failures are ventilated during their sleep, 122

it is important to assess whether the ventilation improves the sleep quality or, 123
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Fig. 1 Histograms of the number of time each of the four selective DDEs (left) and each delays
(right) were selected with minimum error for each sleep stage
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Fig. 2 Time series of coefficient a2 of the delay differential equation (5) and the corresponding
hypnogram. Case of patient 15 (male, 76 years, BMID50 kg.m�2). The manually scored hypno-
gram (green) is also reported for comparison. (a) Raw a2 time series (b) Sequence of integers

at least, that it does not degrade it. In order to do that, it is necessary to be 124

able to rank hypnograms according to sleep quality. From a subjective point of 125

view, sleep quality refers to patient feelings about the refreshing effect of sleep 126

which can be assessed using some sleep diary or the Pittsburgh Quality Index 127

([4]). The characteristics commonly taken into account in such evaluation are sleep 128

latency, sleep duration, regular sleep efficiency, sleep disturbances (including sleep 129

disruptive events such as snoring, apnea, or pains), use of sleeping medication, and 130

daytime dysfunction ([4]). 131

Up-to-now, the objective evaluation of sleep quality was based on the same 132

characteristics but directly measured from hypnograms ([11]). Also considered 133

are the arousal index (number of arousals per hour) and the number of various 134

respiratory events. To assess the evolution of sleep quality, all these quantities are 135

then subjectively combined and compared since none of them can alone allow 136
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to rank hypnograms according to sleep quality (see [17] for details). In order to 137

avoid this last subjective step, we introduced a new index which combines the 138

most important sleep characteristics. Thus, our global sleep quality index takes into 139

account the number of sleep cycles (each cycle, between 90 and 120 min, containsAQ1 140

some slow-wave sleep restoring physical functions and some rapid eye movements 141

restoring cognitive functions), the fraction of WASO, the fraction of stable sleep, 142

the number of micro-arousals, and the number of stage transitions. The global sleep 143

quality index �GSQ is defined as 144

�GSQ D �cycle � �restoring � �stability � .1 � �M � frag/ � .1 � ���frag/ (6)

where �cy D Max
�

Ncy

6
; 1

�
and Ncy is the number of sleep cycles that saturates 145

to one when it exceeds 6 cycles; the restoring capacity of sleep is evaluated 146

according to 147

�restoring D Min

�
5

2

�S3 C �S4 C �R

�S1 C �S2 C �S3 C �S4 C �R

; 1

�
(7)

with �i being the time duration spent in the i th sleep stage (i D S1, S2, S3, S4, and 148

R) and saturates to 1 when the restorative sleep (S3, S4, and R) exceeds 2
5

of the 149

effective sleep; the sleep stability is evaluated according to 150

�stability D � 0
S1 C � 0

S2 C � 0
S3 C � 0

S4 C � 0
R

�effective sleep
(8)

with � 0
i being the time spent in the i th sleep stage without any micro-arousal and 151

not corresponding to an epoch connexe to a stage transition, and �effective sleep being 152

the time duration of sleep stages (�S1 C �S2 C �S3 C �S4 C �R); the sleep macro- 153

fragmentation is evaluated according to 154

�M � frag D �waso

�waso C �effective sleep
I (9)

the sleep micro-fragmentation is evaluated according to 155

���frag D .�S1 � � 0
S1/ C .�S2 � � 0

S2/ C .�S3 � � 0
S3/ C .�S4 � � 0

S4/ C .�R � � 0
R/

�effective sleep
(10)

with �i � � 0
i being the time spent in an epoch of the i th sleep stage with a micro- 156

arousal or connection to a stage transition. 157
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4 Results 158

The time series of coefficient a2 were found quite well correlated to the correspond- 159

ing hypnograms (r D 0:86 ˙ 0:1). To assess the quality of our sleep scorings using 160

the coefficient a2 we computed the confusion matrix ([13]) which is a specific table 161

layout used to assess performance of classifier. Each column of the matrix represents 162

the instances in a predicted class, while each row represents the instances in an 163

actual class. The confusion matrix for all epochs of all patients is reported in Fig. 3. 164

To get a graphical representation the numbers were also converted to a percentage. 165

A dark diagonal from the upper-left corner to the lower-right corner with all other 166

squares in white would indicate perfect scoring of each data window into the correct 167

sleep stage. 168

As additional measure of performance we used Cohen’s kappa � [5,7,21] which 169

can be computed directly from the confusion matrix as [13]. � D pa�pe

1�pe
, where 170

pa D
qP

kD1

pkk , and pe D
qP

kD1

pkCpCk where q D 6 for the 6 classes, pa is the 171

observed percentage of agreement, pe is the expected percentage of agreement, pkC 172

is the percentage of actual classification, and pCk is the percentage of predicted 173

classification. We got � D 0:51 ˙ 0:1 when comparing automatically scored 174

hypnograms with the manually scored ones. Detailed results are reported in Table 2. 175

176The global sleep quality index �GSQ was first computed from the hypnograms 177

scored by the neurologist. Patients were then ranked according to a decreasing �GSQ 178

(Fig. 4). The hypnogram of the patient with the largest �GSQ (35.4 %) is shown 179

in Fig. 5a: it presents 3 sleep cycles quite well structured. Contrary to this, the 180

hypnogram of patient 22 with the smallest �GSQ (0.1 %) is shown in Fig. 5b: it does 181

not present a single well-structured sleep cycle and the effective sleep time duration 182

is small (�effective sleep D 146 min). 183

The rates of each sleep stage was computed for each hypnograms which were 184

ranked according to decreasing �GSQ (Fig. 6). The best hypnogram (patient 34, 185

�GSQ D 35:4) presents a good proportion of restorative sleep. Contrary to this, 186

the worst hypnogram (patient 22, �GSQ D 0:1) associated with a very small fraction 187
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Table 2 Correlation coefficient r and Cohen’s � between the manually scored hypnograms and
the time series of coefficient a2 of model (5) for each subject

t5.1# r � # r � # r � # r � # r �

t5.21 0.82 0.36 9 0.91 0.53 17 0.70 0.28 24 0.95 0.65 32 0.91 0.55

t5.32 0.95 0.61 11 0.80 0.36 18 0.81 0.44 25 0.78 0.41 33 0.84 0.41

t5.43 0.89 0.59 12 0.90 0.64 19 0.87 0.53 26 0.82 0.50 34 0.93 0.66

t5.55 0.91 0.63 13 0.91 0.57 20 0.78 0.59 27 0.92 0.64 35 0.82 0.37

t5.66 0.92 0.51 14 0.76 0.36 21 0.79 0.39 29 0.94 0.61 36 0.89 0.55

t5.77 0.92 0.68 15 0.95 0.67 22 0.80 0.40 30 0.87 0.51 37 0.91 0.59

t5.88 0.79 0.43 16 0.90 0.54 23 0.80 0.41 31 0.79 0.43 38 0.91 0.51
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Fig. 4 Global sleep quality index computed from the manually scored hypnograms for the 35
patients of our protocol
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of restorative sleep and a large one of WASO. Hypnograms are rather well ranked 188

since the rate of WASO and sleep micro-fragmentation are anticorrelated to �GSQ 189

(r D �0:65, p < 0:0001 and r D �0:75, p < 0:0001, respectively). The rate 190

of slow-wave sleep (S3 and S4) and the rate of REM sleep are correlated to �GSQ 191

(r D 0:83, D< 0:0001 and r D 0:59, p < 0:0001, respectively). These features 192

and others that are outside the scope of this paper correspond to an increase of the 193

sleep quality with �GSQ. 194

We now computed the global sleep quality index from the automatically scored 195

hypnograms with our technique (Fig. 7). They were ordered in a slightly different 196

order than the manual hypnograms. In order to quantify this disagreement between 197

these two orders, let us designate by n the rank (n0) the rank obtained by computing 198

�GSQ from the manual (automatic) hypnograms. Thus �n D jn � n0j corresponds 199

to the rank shift observed between these two orders. We thus have �n D 4:6 ˙ 5:4, 200

meaning that, in average, the good (bad) hypnograms remain the good (bad) ones. 201

There are four notable exceptions with the hypnograms for patients 11, 15, 24, and 202

35 for which �n equals to �23, C15, C20, and +11, respectively. 203
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Fig. 5 Hypnograms for two of the 35 patients corresponding to the largest and the smallest global
sleep quality index. The gender, age, body mass index, and the rate of synchronous breathing cycles
are also reported. (a) Patient 34 : male, 82 years, BMID44.1, 2.1% of asynchronous cycles, and
�GSQ D 35:4%. (b) Patient 22 : male, 83 years, BMID36.3, 8.0% of asynchronous cycles, and
�GSQ D 0:1%
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The manually scored hypnogram of patient 11 (Fig. 8a) presents many fluctua- 204

tions between wake and stage S1 and a very few epochs in stages S3 or S4 and 205

REM sleep, thus associated with a small global quality sleep index (�GSQ D 3:7%). 206

The evolution of the coefficient of the DDE fluctuates a lot between the values 207

corresponding to wake and S1 stages. Consequently, since REM sleep is between 208

these two stages from EEG, our technique returns too often REM sleep (and not 209

WASO). This is significantly increasing the global sleep quality index to 24.9. 210
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Fig. 8 Hypnograms for two badly scored using our automatic technique

It is important to note that a neurologist uses a lot the electrooculogram and the 211

electromyogram to distinguish REM sleep from awake and S1, two signals which 212

are not considered by our technique. 213

Contrary to this, the automatically scored hypnograms for patient 24 is char- 214

acterized by a global sleep quality index �GSQ D 7:0% is significantly smaller 215

than the value (16.2%) obtained from the manual hypnograms (Fig. 8b). There are 216

few reasons explaining such a large departure between these two �GSQ-values. The 217

global sleep duration (between the first and the last sleep epoch) is larger than the 218

one obtained from the automatic scoring (221.5 min and 198 min, respectively), 219

but the number of sleep cycles is 2 in both cases. The rate of WASO in the 220

automatic hypnogram is about three times the rate obtained from the manually 221

scored hypnogram (19.9 and 6.6, respectively). The rate of micro-fragmentation 222

obtained with our technique is about three times the rate returned by the neurologist 223
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(31.8 and 11.1, respectively). The stability is smaller in the hypnogram provided by 224

our technique than in the one scored by the neurologist (38.2 and 58.3, respectively). 225

All these modifications tend to increase the global sleep quality index. 226

5 Conclusions 227

In 88% of subjects the overall sleep quality index computed from the DDE 228

hypnograms are in agreement with the sleep quality index computed from the 229

visually scored hypnograms. The difference in 12% of all patients results from 230

converting the real number outputs of the DDE to the integers used for indexing 231

sleep stages (S1, S2, S3, S4, R, and wake). This is the weakest part of the 232

present version of our technique. In spite of this, our hypnograms are already 233

sufficiently close to the manual hypnograms that are used to assess the sleep quality. 234

Importantly, this first study has led to the identification of possible improvements 235

that are currently being developed. 236

Our automatic scoring technique using DDEs is well correlated to the corre- 237

sponding visually scored hypnograms (r D 0:86 ˙ 0:1). This excellent agreement 238

becomes even more impressive when considering the use of only one scalp electrode 239

for the DDE method. Indeed, the most promising aspect of our technique is that only 240

one scalp electrode is sufficient to accurately score sleep stages. 241
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AQ1. The term “contents” has been changed to “contains” in the sentence “..some
rapid eye movements restoring ..” Please check if okay.

AQ2. Please check the figure caption of Fig. 5.
AQ3. Please update the reference [17].


	Automatic Sleep Scoring from a Single Electrode Using Delay Differential Equations
	1 Introduction
	2 Patients
	3 Method
	3.1 Automatic Sleep Scoring
	3.2 Assessing the Sleep Quality

	4 Results
	5 Conclusions
	References




