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Abstract 
Medical diagnosis is an important but complicated task whose automation would be very useful. A 

scarce resource could be made less so and diagnosis could be made more accurate and efficient in both 
monetary terms and in reduced suffering or pain for a patient. We have used decision and probability theory 
to construct such systems from a database of typical cases. This simplifies the task of knowledgeextraction 
from physicians, who often do not know how they have come to a certain diagnosis. Probability models are 
constructed using mixture models that are efficiently learned by the Expectation-Maximization algorithm. 
Problems with missing data are then solved, both for missingdata in thecase database and during diagnosis 
(missing data are then observations not yet made). Decision theory is used to find the most informative next 
question to ask, observation to make, or test to d o  in order to minimize the total cost for the diagnosis. It is 
also used todecide when to stop requesting more information. To automatically find good utility values for 
the decision theoretic model, temporaldifference reinforcement learning is used to increase the system's 
accuracy. Results are presented on a case database for heart disease. 

1 Introduction 

Medical diagnosis is an important task that should be performed as accurately and efficiently as is possible. All doctors 
are unfortunately not equally skilled in every subspeciality and they are in many places a scarce resource. A system 
for automated medical diagnosis would enhance medical care and reduce costs. 

Rule-based expat system are well known examples of such automated diagnosis systems. They can however be 
very complicated todesign since a physician often cannot express his reasoning in simple if-then rules, and they cannot 
reason with uncertainties. It would be desirable to learn models instead of manually constructing them. The learning 
could be done from a database of previous cases. By doing this we can overcome the knowledge acquisition problem. 

. Decision theory which is normative, or prescriptive, can tell us how to behave optimally in a situation French, 
19881. Optimal here means to maximize the value of the expected future outcome. This has been formalized as the 
-mum expected utility principle by [von Neumann and Morgenstern. 19471. 

Decision theory can be usad to make optimal choices based on probabilities and utilities. Probability theory tells us 
how probable different future states are, and how to reason with and represent uncertainty information. Utiliry theory 
values these possibles~tes so that they can be compared to each other. In evidence gathering during a diagnosis session, 
it can be used to ddamine which new possible evidence will be most efficient to acquire next. It will also tell us when 
further evidence will no longer improve the accuracy of the diagnosis. 

2 Probability and Decision Theory Models 

Our automated diagnosis system is based on hypotheses and deductions according to the following steps: 



1. Observations are made. This means that one or several observation variables are set to one of its possible values. 

2. The system constructs a differential diagnosis, i.e., estimates probabilities for the different possible outcomes. 
The system uses a probability model to calculate the conditional probability for each of the outcomes given the 
current observations. 

3. The next observation that would be most useful is recommended. In this step each possible next variable is con- 
sidered. The expected value of the system prediction with this variable observed is then calculated. From this 
we subtract the current maximum value before making the additional observation. Then the cost of the obser- 
vation is subtracted to reach to the net value of information [Howard, 19661 for this variable. The variable with 
the maximum of all of these is then the best next observation to make. Note that we only look ahead one step 
(called a myopic approximation [Gorry and Barnett. 19671). This is in principle suboptimal, but the reinforce- 
ment learning procedure described below will rectify this. 

4. The steps 1-3 above are repeated until nothing more can be recommended. This happens when none of the net 
value of information values in step 3 is positive. 

We buildseparate probability and decision theory models. The probability model is used to predict the probabilities 
for the different diseases that can occur. By modeling the joint probabilities these predictions are available no matter 
how many or few of the input variables are available at a certain instant. Diagnosis is thus a missing data problem due to 
the question-and-answer cycle above. Joint probabilities are modeled using mixture models [McLachlan and Basford, 
19881. Such models can be efficiently trained using the Expectation-Maximization (EM) algorithm pempster et al., 
19771, which has the additional benefit that missing variable values in the training data also can be handled correctly. 
Most databases are incomplete in this way. 

The utilities are values assigned to different states so that their usefulness can be compared. We can then chose our 
actions to maximize the expected future outcome. We represent utilities as preferences when a certain disease has been 
classified but the patient in reality has another one [Howard, 1980; Heckerman et al., 19921. For each pair of diseases 
there is a value between 0 and 1, where a 0 means very bad and a 1 means very good. This is a d x d matrix for d 
diseases. To find these values is an additional knowledge acquisition problem which is non-trivial. 

Methods have been devised to convert people's perceived risk to monetary values [Howard, 19801. They are asked 
to answer questions such as: "How much would you have to be paid to accept a one in a millionth chance of instant 
painless death?" The answers are recorded for various low levels of risk. It has been empirically found that people are 
relatively consistent in this, and that this is linear for low levels of probability. Howard defined the unitmicromort (mmt) 
to mean one in I millionth chance of instant painless death to simplify this. [Heckerman et al., 19921 found that one 
subject valued 1 micromort to $20 (in 1988 US dollars) linearly to within a factor of two. We use this to convert utilities 
in probability units ([O,l]) to values in dollars and vice versa. 

Previous systems ask an expert to supply the utility values, which can be very complicated, or use some simple 
approximation. [Heckerman e~ al.. 19921 use a 1 for misclassification when both diseases are malign or both are benign, 
and 0 otherwise (see Figure 3, left). They claim that it worked in their system but, as we will see below, this crude 
approximation will reduce the accuracy. We show how to adapt and learn utilities to find better ones. Utilities are 
adapted using a type of reinforcement learning, more specifically the method of temporal differences (TD) [Sutton, 
19881. This method is capable of adjusting the utility values correctly even though we only get an error signal after 
each full sequence of questions in a diagnosis session. 

More details of the various system components can be found in [Stensmo, 1995; Stensmo and Sejnowski, 1995a; 
Stensmo and Sejnowski, 1995bl. 

3 Results 

The publically available Cleveland heart-disease database was used to test the method. It consists of 303 cases where 
the disorder is one of four types of heart-disease or its absence. There are fourteen variables as shown in Figure 1. 
Continuous variables were converted into a l - o f N  binary code based on their distributions among the cases in the 
database. Nominal and categorical variables were coded with one unit per value. In total 55 binary variables coded the 
14 original variables. 

To find the parameter values for the mixture model that is used for probability estimation, the EM algorithm was run 
until convergence. 98 binomial mixture components gave the best classification results using just the mixture model 
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Figure 1 : The Cleveland Heart Disease database. 
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The database consists of 303 cases. costs are somewhat arbitrarily assigned and are given in both probability units [O,1] 
and converted to corresponding dollar values based on $20 per rnicromort (one in 1 millionth chance of instant painless 
death). 

to predict the probabilities of the diseases from the observations of each case. We tried from 40 to 120 mixture com- 
ponents. The classification error was 46 or 15.2% with 98 components. Note that all of the observation variables were 
set to their correct values for each case, and that utility values were not used in this case. 

To evaluate how well the system does, we go through every case in the database and answer the questions that 
come up according to the correct values for the case. When the system is done with the diagnosis sequence, the result 
is compared to the actual disease that was recorded in the database. The number of questions that were answered for 
each case is also recorded. After all of the cases have been processed in this way, the average number of questions 
needed, the standard deviation for this, and the number of errors are calculated. 

The system's answer can be interpreted in two ways: One is to look at themost probable disease that is present. This 
is the disease that has the highest conditional probability given whatever questions were answered for this particular 
case. The other interpretation is to look at which disease that has the highest expected utility using the current utility 
mahix. These two answers can be quite different. If the system has several best answers, one is selected randomly. 
This can give rise to some random fluctuations. 

Observation costs were assigned to the different variables according to Figure 1. Using the full utilityldecision 
model and the 011-approximation for the utility matrix (left part of Figure 3), there were 89 errors using the probability 
prediction, and 130 emrs with the corresponding utility prediction. Over the whole data set an average of 4.42 ques- 
tions were used with a standard deviation of 2.02. Asking about 4 questions instead of 13 is much quicker but unfor- 
tunately less accurate. This is without adapting the utilities. 

With TD learning, we were able to decrease the number of errors to 47 for probability measurement and 48 for 
utility prediction with 20 repeated presentations of all of the cases. The TD algorithm is controlled by two parameters, 
a learning rate a. and a discount parameter X that controls how predictions at different states in a sequence relate to each 
other. We varied X from 0 to 1 in increments of 0.1, and varied CY over several orders of magnitude to find the reported 
results. The resulting average number of questions were 6.33 with a standard deviation of 1.90. The initial utility 
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Figure 2: Results on the Cleveland Heart Disease Database. 
The three methods are described in the text. The first method does not use a utility matrix. The 011 approximation use 
the matrix in Figure 3, left. The utility matrix that was the result of the TD learning is shown in Figure 3, right. 

Initial After 12 iterations 
1 0 0 0 0  0.9495 0.0870 0.0609 0.0496 0.0505 
0 1 1 1 1  0.0294 0.735 1 0.196 1 0.1840 0.5029 
0 1 1 1 1  0.0030 0.1075 0.7321 0.2100 0.4987 
0 1 1 1 1  0.01 18 0.0644 0.1509 0.7885 0.48 16 
0 1 1 1 1  0.0004 0.0520 0.1060 0.1304 0.8494 

Figure 3: Misclassification utility matrices. 
Left: Initial utility matrix. Right: After 12 iterations with discount-rate parameter X4.1, and learning rate a=0.005 
for the TD algorithm. ' 

matrix is shown in the left side of Figure 3. The utility matrix after 12 iterations is shown on the right, with a=0.005 
and X=0.1. After 12 iterations the results stay the same up to 30 iterations which is where we stopped, except for some 
minor fluctuations in the average number of questions. 

The results are summarized in Figure 2. As can be seen, the price paid for increased robustness is an increase in  
the average number of questions from 4.42 to 6.33, but note that we can then in fact get the same accuracy as we have 
when we use all of the input variables by using only less than half of them on average. Note that most people intuitively 
think that half of the questions should be enough. There is however no logical reason for that, and you do not know 
when to stop asking questions if you just pick some random observations. The results on the same database reported 
in [Stensmo and Sejnowski, 1995b1 are slightly different due to the use of a slightly different TD algorithm: thediagonal 
of the utility matrix was forced to be one, all costs were set to zero, and the minimum allowed gain was 0.00001 instead 
of 0. 

4 Summary and Discussion 

We have designed a system for automated medical diagnosis that is based on probability, utility and decision theory. 
This allows for principled handling of missing data, observation selection and incorporation of costs into the process. 
All of the system parameters can in addition be learned from a database of cases. 

This method can be extended in several directions. Here are some interesting openings that we are currently pur- 
suing: 

Utilities are considered to be non-linear [Grimrnett and Stirzaker, 1992; Russell and Norvig, 19951 but are, prob- 
ably by convenience, often modeled linearly (as with our misclassification utility matrix) in decision theory, since 
manual specification and interpretation of the utility values then is quite straight-forward. We believe that non- 
linear functions for utilities could be very useful. This can also be implemented through TD learning using a 
multilayer utility prediction network [Sutton, 1988; Tesauro, 19921. 

0 An alternative to learning the utility or value function is to directly learn the optimal actions to take in each state, 
as in Q-learning watkins and Dayan, 1992; Tsitsiklis, 19941. This would require one to learn which question to 
ask in each situation instead of the utility values but would depart from the normal decision theoretic formulation 
using the maximum expected utility principle. 
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