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ABSTRACT

Making a perceptual interpretation can be viewed as.a
computational process in which a plausible combination is
chosen from among a large set of interdependent
hypotheses. In a cooperative computation the hypotheses
are implemented by units that interact non-linearly and in
parallel via excitatory and inhibitory links (Julesz, 1971;

._' Marr- & Poggio, 1976; Sejnowski, 1976). A particular

- perceptual task is specified by external inputs to some of the
units and the whole system must then discover a stable state
of activity in which the active units represent the hypotheses
- that are tzken as true. We describe a search procedure based
on statistical mechanics that finds near optimal combinations
of hypotheses with high probability, and we show that the
hardware units required for its efficient implementation are

. ‘sin'lilar to neurons. Even though the individual units are
.. non-linear, there js a linear relationship between the synaptic

wcwhts and the logarithms of the probabllmcs of global
states into whxch the system settles. This makes it possible to
ur.plement a’ convergent learning procedure which specifies
just how the synaptic weights need to be changed i in order to
learn the constraints in a given domain,

_Introduction -

Cormder the problem of makmg a3D mterpretanon of a
2-D line drawing. Each line in the picture, considered in
isolation, could depict any one of a large set of 3-D edges.
People resolve this local’ ambiguity by using assumptions
about the ways in which-edges go together in the 3-D world.
These assumptions make some combinations of edges far
more plausible than others. There are two roughly separable
problems in, understanding the use of assumptions in

~perception. The first is to specify clearly what,,the'i
assumptions are, and the second is to find a search procedure

that can discover interpretations which optimally fit the
input data and the assimpltions, even when somé of the
assumptions conflict with one another (Attneave 1932), Our
“concern here is with the second problem: How can we

-discover interpretations that opumally fit a Iarge sct of .

plausible assumpuons"
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Attneave (1982) and others (Hinton 1977) have proposed
cooperative models in which neuron-like hardware units
represent particular 3-D  edges and ‘the rules are
implemented by excitatory and inhibitory interactions
between these units. Each line in the drawing provides input .-
to the whole set of 3-D edges which are consistent with it, ;
and under .the influence of this input the whole system
settles into a stable state of aclivity which represents the
interpretation. It is not obvious that such a search process
can be made to work. The apparent difficulty of analyzing;’

. the behaviour of cross-coupled, non-linear systems makes it'

tempting to believe that the only way to make progress is
through computer simulation. In this paper we attempt to
show that mathematical analysis is possible and illuminating.

Most of the existing proposals for woperaﬁve search

. mechanisms assumé that there are real-valued activity levels . -

which change smoothly during the search (Rosenfeld, ~_" _
Hummel & Zucker, 1976). . These activity levels are'often -
associated with the firing ratés of neurons, and they are

normally used to represent the value of a physical parameter
such as slope in depth, or the current probability that a
hypothesis is correct. The method we shall describe uses a
very. 'different representation. The units that stand for.
hypotheses only have two states, trug and false. However, the
decision rule which determines which state they enter is
probabilistic, so they can change their state even if they are
receiving constant input. The use of a probabilistic decision
rule makes the cooperative search easier to analyze than with

. a deterministic rule because it makes it possible .to apply

methods from statistical mechanics. Instead of being a
drawback, the non-determinism has the advantage of
allowing the system to escape from sub-optimal states. We
start by describing a system in which there is a deterniinistic

decision rule that is applied at random moments and then we

generalize this case to a non-deterministic rule.
Cooperative  search with
deterministic binary units

Hopfield (1982) postulates a system with a‘large number of -
binary units. The units are reciprocally connected, with the
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strength of the connection béing the same in both directions.
Given the current inputs from outside the system, any
particular state of the system has an associated:"energy” and

the whole system behaves in such a way as to minimize its
energy. The energy of a state can be interpreted as the‘extent’. .

to which it violates a set of plausible constraints, so in
minimizing its energy it is ma)ummng the extent to which it

~ satisfies the constraints.

The total energy of the system is dcﬁ.ned as

E= —1/.22 Wi SiSi— Z (n;—0)s; » @
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where 7; is the external input to the i unit, wy; is the
strength of connection (synaptic weight) from the j* to the

#" unit, 5; is a boolean truth value (0 or 1), and f;isa

- thrcshold

A simple algon'thm for finding a oombinétio'n of tmih values

that is a local minimum is to switch each hypothesis into

whichever of its two states yields the lower total energy given .

the current states of the other hypotheses. If hardware units

make their decisions asynchronously, and if transmission :
times arc negligible, then the system always settles into a * *~

, local energy minimum. Because the connections are

~ symmetrical, the difference between the energy of the whole
system with the Kk hypothesis false and its energy with the
k™ hypothesis true can be determined locally by the k™ unit
(Hopfield, 1982), and is just

AEg= W)+ ie=0r @
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* Therefore, the rule for minimizing the energy contributed by
a unit is to adopt the true state if its total input exceeds its
‘threshold, which is the,f‘amiliar rule for binary threshold
units (Minsky & Papert, 1968). ‘

Using probabilistic decisions to
escape from local minima

The dcterministic algorithm suffers from the standard
weakness of gradient descent methods: It gets stuck at local

minima that.are not globally optimal. This is an inevitable ;
consequence of only allowing jumps to states of lower;3
|If however, jumps to higher energy states
occasxonally .occur,. it is possible to Lreak out of local
minima. An algorithm with this property was introduced by
'Metropolis et al (1953) to study average properties of

-energy.

thermodynamic systems (Binder, 1978) and has recently
been -applied to problems of constraint satisfaction
(Kirkpatrick, Gelatt & Vecdi, in press), We adopt a form of
the Metropolis algorithm that is suitable for paralle]
computation: If the energy gap between.the true and false
states of the k™ unit is AEy, then regardiess of the previous

- state set 5z=1 with probability

d
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b= <i+e-AEk/T) ; @)

where T is a parameter which acts like temperature (see fig. -

1). This parallel algorithm ensures that in thermal .

equilibrium the relative probability of two global states is

determined solely by their energy dxffcrence and folléws a |

Rolizmann distribution. \
Lo o (Eq=EgVT @
P/3 i

Atlow temperatures there is a sﬁrémg bias in favor of states
with Jow energy, but the time required to reach equilibrium
may be long. At higher temperatures the bias is not so-

. favorable but equilibrium s reached faster.
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Figure 1

Probability p(AE) that a unit is in its “true” state as a

- function of its energy gap AE plotted for T=1 (Eq. 3).
As the temperature is lowered to zero the sigmoid
approaches a step function.-



. system from
- tcmpcrature and. if they can be temporarily suppressed,
equilibrium can be achieved rapidly at a temperature at -

Redicing the time to réach.
equﬂzbnun1 : L

i

* One technique that can be used to reach a good ethbnum

distribution quickly is to start at a high temperature and then

1o cool down (Kirkpatrick et al, in press). This type of -
- search by "simulated annealing” initially finds a large-scale

minimum but fluctuates around it because of the high
temperature, | As the' temperature is reduced,, a- good
minimum will be found within the large-scale minimum,.and
50 on. In general, it is impossible to guarantee that a global
minimum will be found, but a nearly global minimum can
bc found with high probability.

We are mvesunatmg an addmonal technique which we sha]l
only menuon here. Energy barriers are what prcvent a
reaching equilibdum rapidly ' at 'low

which the distribution strongly favors the lower minima; The
energy barrjérs' cannot be permanently removed, bécause
they correspond- (o states that violate the constraints, and the

" energies of these states must be kept high to prevent the

system from settling into them. However, for special cases it
is possible to design units which are active during the search

' process but are quiescent in the final ‘state: When one of
" these special units is active it lowers the energy of a state that
“would. have been an energy barrier between two local

minima. ‘"The special units are a way of implementing
heuristic knowledge about how to search the space.. They
have no effect on the energies of final states, and in thls
respect they are like catalysts.

'-Léérhing

'Sor far, we have assumed that the interactions between the

units implement the correct constraints, and we have

- .focussed on the search problem. However, in a system where

the weights represent many plausible assumptions that
interact, it is not obvious how to choose the weights to

" produce the desired behavior. We will show that, as a

consequence of the probabilisti¢ decision rule, it is possible
for a cooperative module to internalize the constraints in any
‘domain simply by being told whether the solutions it semcs
into are right or wrong. When the module settles to the

wrong solution, it modifies the weights so as to raise the

energy of that state and thus make it less likely to be found

in fulure Sxmd.xrly. good soluuqns that are not found often -

P
cnough have their energies ‘lowered when they, are found
This sunp]e ‘procedure is effccuvc because of the | Imear
relahonshlp between the synapnc welghts and lhe logs of

i .
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probabilities of whole states at thermal equilibrium. If we
temporarily ignore the thresholds and the external inputs to
the units and assume a temperature of 1, we have: |

1n<_—§-;->=—(5a—Ep>] | \
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where

hh =588 =l oF
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and s¢ is the state of the /" unit in the a* global state,

To explain the ]eaﬁﬁng procédure, we invent a hypothetical :

- . ideal system which settles into global states with exactly the -

" probabilities required. We then show that if the actual

system is told whether its current probabilities for particular
states are too high or too low, it can modify its . weights so
that they.more closely resemble the weights in the
hypothetical ideal system.,

S?ppose that under the influence of a- constant external

. input vector, the actual system settles into two different -

states, Sq.Sp with probability;_rat__io Py/Pp. Suppose that
the probability ratio demanded by the evaluation function
(and achieved by the ideal system) is P’,/P’'g which is
higher. The actual system can increase its probability ratio by.
increasing the energy difference, Eg — E . This can be done
by adding & to each weight belween a pair of active units in
Sq and subtracting § from each weight between a pair of -
active units in Sg. The net change in a weight is then 8.4 ‘,;ﬂ ,
. We now prove that, provided § is sufficiently small, each
application of this learning procedure is guaranteed to--
reduce the Euclidean distance, D, between the current set of

© weights, wy;, and the ideal cnes, w’ j- Assume that the actual

and ideal systems have the same external inpufs and
thresholds, and that T = 1. If the error, r, in the probability
ratio achieved by the actual system is

P’ P
r=lin (-1—37“—)——'-171 (—I;Z—)

. then from oquatidns 4 and S, we have;

1= (B~ E'D)+(Eq- Ep)




’ So the dzstance is reduced iff § <2r/n

i
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Before applying the learning rule we have ' i

5 :
D'before= Z (w—w'
7 .

and aﬂerwards‘; ' 4 . -

Dzﬂer—"" Z(WU+ 8.h gﬂ - )Ap”.j)2 :

=Depore =8 p @h P =20 wy— 8PP -
E . g L :
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AN

=D’,,eﬁ?,; —8(2r—58.1n)

= the number of weights that are

Having a simple convergent learning p:rooedure for a non-

linear system is irnportant because it allows the synaptic

weights that implement the energy function to” be
determmed by feedback from the correctness of the

mterpretauon that the system settles into. 'Thus the

constraints implicit in the task can be programmed into the
system simply by telling it how well it is doing.

" The learning procedure assumes that the system receives
.. feedback from an evaluatof that tells it whether the current
value of In(P /P ) is greater or less than the ideal value -
‘ In(P’ /P ). i places a very stringent requirement on
the eva}uator since it must know about the desired

probabﬂmes of whole global states like S To build these

.-desired probabxlmes into the evaluator, the representahons

that the system should use must be decided in advance. A
less omniscient evaluator would only know what some of the

units should do for each mput vector and would lcave the .
system to dec:de for itself how to use the remaining,

“hidden" units to achieve this. Suppose, for example, that
there is a set/of global states Qa"\\f/hichz only differ from one
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another in the hidden units that the evaluator cannot see.

| The evaluator specifies required probabilities of the form:

N 'P,Qa Zpa.

acll,
i but it does not specify how the total probability should be

‘.“ distributed over the various states in £ . The different ways

H

a
j of distributing the probability correspond to using different
i representations in the hidden units.’

" If there are units that are hidden from the evaluator, it is
¢ impossible to define a single hypothetical ideal set of

weights. There may be many different complete sets of
weights which would yield the required behaviour for the
"visible" units, and these sets do not, in general, form a
convex set. In travelling towards one suitable set of weights;
the system may travel away from other equally suitable sets,
0 convergence on any one set is not guaranteed. This means -

we need a different measure of the progress of learning in

order to prove convergence. A suitable measure is the
information theoretic distance, G, between the actual and
required probability dlsmbutmns over all 2 states of the n

‘visible umts
G= ) :P In(534—-) -
p Qa (P/Qa )

The value for G depends implicitly on the W and so Gcan.

“ be reduced by changing each weight by an amount that is

proportional to the partial derivdtive of G with respect to
that weight. We'describe this learning rule further in Hinton

~ and Sejnowski (1983). It is guaranteed to find a minimum of

G, but it may only be a local minimum rather than a global :
“one. Local minima occur when the system is doing the best
that it can given the representations it has learnt in the

hidden units. To do better it has to change these.
representations which involves a temporary setback in how " -
well it meets the requirements on the probabilities of the .
states of the visible units. Of course, if the modlﬁcanons to :
{the weights are probabilistic so that G can sometimes

increase, it is possible to escape from local minima an
ensure that after enough learning there is a blas in favor of -
the beuer local minima. ‘

Relation to the brain

i There are two different ways o interpret the input-output :;
function (hat hardware units should have to implement the -~
parallel search (Fig. 1). During a short interval the sigmoid .
curve describes the probability of a nit being in the true+

state as a function of the energy gap between the false and
true states. For much longer time intervals the curve -
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" of imprecision.

“linear condmons needed for efficient learning,| , Theussue of

!
i
i
¢ N !
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l

‘ dcscnbes Lhc propomon of time that the umt is in its true

state. If we assume that a hypothesis which xs true | all the
time is represented by a neuron firing at its maximum rate,
then the curve in Fig. 1 can be interpreted as the ﬂrmg rate
of a ncuron as a function of ils average input (Se_]nowskx,
1977). However, the way in which truth’ values are

represented by action potentials is not the kind of simple |

encoding in, which two different voltage levels stand for the

I

two truth values. Instead, it appears that an action potential

only provides a delta-function type of signal that’ drives

integrative processes in the recipient neurons. This amounts
to treating ‘a hypothesis as "true" for a whole refractory .

period after'an action potential has been emitted.

if
N

The parallel :"al gorithm for coopérativc search dep{:nds'_on thé ‘

computation of energy gaps AE; In the case of

e symmemcally connected units the g]oba] energy gaps can be
‘ cpmputed Jocally by singie units, It seems unlikely that -
" neurons in cerebral cortex are symmetn’cally connected, but

if a neuron rccexves many inputs it can still estimate what its

.-oonmbuUOn to the total energy would be if all- ‘the

connections had been symmetrical. In slmulauons,

asymmetric' networks behave like symmetric ones with

added noise (Hopfield, 1982),

approximate the performance of a symmetric one.

The computational model analyzed in this paper is not a
realistic model of processing in cerebral cortex, for it falls far :

short of explaining the known anatomical and physio]o‘éical .

facts. The analysis may, however, provide insight into a class

“of computational devices. that depend on probabilistic

, and time delays in
‘transmission have a similar effect. Provided that the task | -
. Tequires symmetric connections, as is the case for problems

" " of constraint satisfaction, an asymmetri¢ network can closely

parallel processing. Understandmg general properties of this.

- class may be a useful first step in understanding pamcular

_highly-evolved members of the class. For example, the .
probabilistic nature of electrical responses of single neurons

is well-known, but has generally been regarded as evidence

Probability, however, may be a central
design principle of cerebral cortex (Sejnowski, 1981). A very
close approximation to the functon in .Fig. 1 can be
“implemented by simply adding Gaussian noise to a binary .
threshold unit, with the standard deviation of the n01se3
acting like: temperature We suggest that fluctuations may be | ;
dehberalely added to neural signals 1o avoid. lockmg the |
network mto unwanted local optima and to provide the

noise in th; nervous system deserves renewed: expenmental
investigation and further theorcﬂcal analysis._
{ 5

it
I
fd
i
'

Acknowledgements

This work was supported- by grants from the -System

Development Foundation and by earlier grants from the
Sloan Foundation 10 Don Norman and to Jerry Feldman.
We thank Francis Crick, Scott Fahiman, David Rumelhart,

and Panl Smolensky, for hrelpful discussions.

REFERENCES

 Altneave, F.Pragnanz and soap-bubble systems: A
! theoretical explomuon In J. Beck (Ed.) Organization and
Represemauon in  Perception. Hillsdale, NIJ: Lawrence
Erlbaum Associates, 1982,

Binder. K.(Ed.) The Monte-Carlo Method in S!allsueal_“__kﬂ,_,'
'\ Physics New YorL Springer-Verlag, 1978. U

* ! Hinton. G. E. Relaxation and its role in vision. PhD Thesis, == ¢
. University of Edinburgh, 1977; Described in: Computer .
* Vision. D. H. Ballard & C. M. Brown (Eds.) Englewood -

: Clxﬁ”s NJ: Prentice-Hall, 1982, pp. 408-430.

_Hmlon G.E. & Scjnovsskx

. Hopfield, J. J. Neural networks and physical systems with .

' emergent collective computational abilities, Proceedings of -

" the 'National Academy of Sciences USA, 1982, 79 pp .
2554-2558. § o

~

inference. To appear in:
conference on Computer Vision and Pattern Recogmuon
Washington DC, June 1983,

T.J. Optimal pcrceptual“k
Proceedings of the IEEE -

Julesz, B. Foundations of C, yclopea_n Perception Chlcago

Umversny of Ch1cago Press, 1971.

Kirkpatrick. S. Gelatt, C. D. & Vecci, M P. Opl.lleaUOrl by -

. simulated annealing. Science (in press)

Marr, D. & Poggio. T. Cooperative computation of stereo .

disparity. Science. 1976 194. p.283- 287.

. Metropolis, N. Rosenbluth AW, Rosenbluth M, N. Teller,

" A.H.Teller, E. Journal of Chemical Physics. 1953 6, p 1087.

" “Rosenfeld, A.Hummel,

Minsky, M. Papert,; S. Perceptrons Cambndge MA: MIT":

Press 1968.

R.A. & Zucker. S.W. Scene
Jabeling by relaxation operadons. /EEE Transactions on
Systems, Man, & Cybernetics. SMC -6, 1976, pp 420-433.

Se_;nowskl. T.J. On global propemes of neuronal interaction.
Biological Cybernetics. 1976, 22, pp 85-95,

Se_1nowsk1 T.J. Storing covariance
interacting neurons. Journal of Mathematical Biology, 1977,
4, pp 303-321.

Sejnowski, T. J. Skeleton ﬁ)tcrsm the brain, In G. E. Hinton -

& J.A. Anderson (Eds.) Parallel Models of Associative
Memory. Hillsdale, NJ: Erlbaum, 1981, pp 189-212.

with. non-linearly -



