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ABSTRACT ' . 

Making a perceptual interpretation can be viewed as . a  
computational process in which a plausible combination is 
chosen from anlong a large set of interdependent 
hypotheses. In a cooperative computation the hypotheses 
are irnplen~ented by units that interact non-linearly and in 
pa.ralle1 via exciktory and inhibitory Sinks (Julesz, 1971; 
Man.  & Poggio, 1976; Sejnowski, 1976). A particular - 
: perceptual task iS specified by external inputs to some of the 

units and the whole system must then discover a stable state 
of activity in which the active units represent the hypothges 
that are tAen as true. We describe a search procedure based 
on statistical mechanics that finds near optimal combinations 
of hypotheses with high probability, and we show that the 

.. hardware units required for its efficient irnpkmentation are 
sin~ilar to neurons. Even though the individual units are 

. non-linear, there is a linear relationship between the synaptic 
wights and t ie  logariLhms of the of global 
states into which the system settles. This makes it possible to 
iitiplement a'conyergent learning procedure which specifies 
just how the synaptic weights need to be changed in order to 
learn the constrain& in a given domain. 

Int ro'duction 

Consider the problem of making a 3-D interpretation of a 
2-I) line drawing. Each line in the picture, considered in 
isolation, could depict any one of a large set of 3-D edges. 
People resolve this local'arnbiguity by using assumptions 
a b u t  the ways in which'edges go together in the 3-D world 
~ h e s e  ass~~mptions make some combinations of edges far 
more plausible than others. There are two roughly separable 

' problems in. understanding the use of assumptions in 
perception. The first is. to specify clearly what ,.the 
assumptions are, and the second is to find a search procedure 
that can discover interpretations which optimally fit the 

Attneave (1982) and othek (Hinton 1977) have proposed 
axperathe models in which neuron-like hardware units 
represent particular 3-D edges and 'the rules are 
implemented by excitatory and inhibitory interactions 
betxeen these units. Each line in the drawing provides inpu 
to the whole set of 3-D edges which are consistent with i 
and under .the influence of this input the whole syst 
settles into a stable slate of activity which repre'sents 
interpretation. It is not obvious that such a search process 
can be made to work. The apparent difficuhy of analyzing\' 

.' the behaviour of cross-coupled, non-linear systems makes it I 

tempting to believe that the only way to make progress is 
through computer sinlulation. In this paper we attempt to 
show that mathematical analysis is possible and illuminating. 

Most of the existing proposals for cooperative search 
mechanisms assume that there are real-valued activity level 
which change smoothly during the search (Rosen!el 
Hummel S: Zucker, 1976). These activity levels are'often 
associated with the firing rates of neurons, and they are 
normally used to represent the value of a physical paramere 
such as slope in depth, or the current probability that 
hypothesis is correct The method we shall describe uses 
very different representation. The units that stand for. 
hypotheses only have two states, true and false. Howevzr, the 
decision rule which determines which state they enter is 
probabiiistic, so they can change their state even if they are 
receiving constant input. The use of a prababilistic decision 
rule nlakes the cooperative sexch easier to analyze than with 

, a d~terministic rule because it makes it possible to apply 
methods from statistical mechanics. Instead of being a 
drawback, the non-deterninism has the advantage of 
allowing the system to escape from sub-optimrd states. We 
s m  by describing a system in \vhich there is a deternimistic 
decision NIC that is applied at random moments and then we 
generalize this case to a non-deterministic rule. 

I input data and the assumptions, even when some of the I 
I assumptions conflict with one another (Attneave 1982). Our . . Cooperative search with ' 
I 
1 concern here is with the second problem: How can we de terminis t ic  binary units 
I 

,discover interpretations that optimally fit a large set of . 

I . . Hopfield (1952) postulafes a system uith a.large number of 
plausible assumplons? " I binary units. The units are reciprocally connected, with the 
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strength of the connection being the same in both dhktions. 
Given the current inputs from outside the system, any . 

particular state of the system has an associatedb"energy" and 
the whole system behaves in such a way as to minimize its , 

energy. The energy of a state can be interpreted as the'extent 
to which it violates a set of plausible constraints, so in 
minimizing ils energy it is maximizing h e  extent to which it 
satisfies the constraints. 

The total energy of the system is defrned as 

where qi is the external input to the irh unit, wi. is the 
dl strength of,connection (synaptic weight) from the J to the 

irh unit, si is a boolean truth value (0 or I), and Bi  is a 
: threshoid. 

.A simple algorithm for finding a com bination of truth values 
that is a local minimum is to switch each hypothesis Into 
whichever of its two states yields the lower total energy given 
the current states of the other hypotheses. If hardware units 
make their decisions asynchronously, and if transmission 
ti?;= arc negligible, then the system always settles into a 
local ecergy minimum. Because the connections are 
symmetrical, the difference between the energy of the whole 
system with the kr" hypothesis false and its energy with the 
kIh hypqthests true can be determined locally by the krh unit 
(Hopfield, 1982), and is just 

theqodynamic systems (Binder, 1978) and has recently 
been, . applied to problems of constraint satisfaction 
(Kirkpatrick, ~ e l a t t  & Vecci, in press). We adopt a form of 
the Met.~Dpolis algorithm that is suitable for p d e l  .. 
computation: If the energy gap between the true and false 
slaks of the krh unit is AEk then regardless of the previous 
state set sk= 1 with probability 

where T is a parameter which acts like temperapre (see fig. 
1). This parallel algorilhrn ensures that in thermal 
equilibrium the relative probability of two global states is 
determined solely by their energy difference. and folldws a 
~oltzmann distribution. 

At low temperatures there is a s&ng bias in favor, of slates 
with low energy, b; the time required to reach equilibrium 
may be long. At higher temperatures the bias is not so 
favorable but equilibrium is rwched faster. 

-. . 

. . 
Therefore, the rule for minimizing the energy contributed by .PO - 
a unit is to adopt the true state if its total input exceeds its - 4  -1 0 1 4- 

threshold, which is the,familiar rule for binary threshold 
units (Minsky & Papert, 1968). 

Using probabilistic decisions to 
escape from local minima 

The dctern~inistic algorithm suffers from the standard 
vswkness of gradient descent methods: It gets stuck at local 
minima that.are not globally optimal. This is an inevitable 
consequence of only dlon.i;lg jumps to states of lower, 
energy. 1 If, however, jumps to higher energy states 
occasionally occur, it is possible to break out of local 
minima An algorithm nith Lhis $ropefly was introduced by 
Metropolis er ai (1953) to study aver& prop&ies of '  

Figure I 

Probability p(AE) that a unit is in its "true" stale as a 
function of iis energy gap AE plotted for T=1 (Eq. 3). 
As the temperature is lowered to zero the sigmoid 
approaches a step function., 
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- Reducing t h e  t i m e  to reach.  , 

- equi l ibr ium - 

One technique that can be used to reach a good equilibrium 
distribution quickly is to start at a high temperature and then 
to cool down (Kirkpalrick et. a l ,  in press). This type of 
search by "simulated annealing" initially finds a large-scale 
minimum but fluctuates around it because of the high 
temperature. As t h e  temperature is 'reduced, a good - minimum will be found within the large-scale n~inimum,.and 
'so on. 'In general, it is impossible to guarantee that a global 
minimum will be found, but a nearly global minimum can 
be found with high probability. 

We are investigating an additional technique which we shall 
cnl;. mention here. Energy baniers are what prevent a 
system fibm reaching equilibrium rapidly at low 

- temperature, and. if they can be temporarily suppressed, 
equilibrium can be achieved rapidly at a temperature at 
which h e  distribution strongly favors thelower mininla n i e  
energy barriers'cannot be permanently removed, because 
they correspond to states that violate the constraints, and the 
energies of these states must be kept high to prevent the 

. . systm from settling into them. However, for special cases it 
is possible to design units which are active during the search 
process but are quiescent in the final state. When one of 
these special units is active it lowers the energy of a state that 
would have been an energy bamer between two local 
minima 'The special units are a way of implementing 
heurisrjc knowledge about how to search the space. They 
have no effect on Uie energies of final states, and in this 
respect they are like catalysts. 

6 ' 

Learning  

Soefar, we have assumed that the interactions between the 
units implement the correct constraints, and we have 
focussed on the search problem. However, in a system where 
the weights represent many plausible assumptions that 
interac~ it is not obvious how to choose the weights to 
produce ;he desired behavior. We will show that, as a 
consequence of the probabilistic decision rule, it is possible 
for a cooperative module to internalize Ute constraints in any 
'domain simply by being toid wh'elher the solutions it settles 
into are right or wrong. When the module settles to the 
wrong solution, it modifies the weights so as to raise the 
energy of that state and thus ,make it less likely to be found 
in future. S,&nilarly, good solutio,ns h a t  are not pnd, often 
endugh have their energies'lowered when they me found, 
This simple procedure 6 effective bemuse of the'linear 
relationship between the synaptic weights and 'the logs of 
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! probabilities of whole states at thermal equilibrium. If we 

. I  
temporarily ignore the thesholds and the external inputs to 
the units and assume a teinperature of 1, we have: I 

rh and r is d e  state of the ih unit in the a global state. 

To explain the learning procedure, we invent a hypothetical 
. ideal system which settles into global states with' exactly the 

probabilities required. We then show that if lhe actual 
system is told whether its current probabilities for particular 
states are too high or too low, it can modify its weights so 
that they. more closely resemble the weights in the 
hypothetical ideal system. ' 

Suppose that under the influence of a constant extemal 
Gput vector, the actud system settles into two different 
states, S,,Sp with probability ratio P,/Pp. , Suppose th,d 
the probability ratio demanded by the evaluation hnaion 
(and achieved by the ideal system) is P1.IP$ which b 
higher. The actual system can increase its probability ratio by. 
increasing the energy difference, Ep - E,. This can be done 
by adding 8 to each weight between a pa? of active units 
S, and submcling 8 from each we'ighl between a pai 
active units in Sp. The net change in a weight is then 8.h 

y e  now prove that, provided 8 is sufficiently small, ea 
application of this learning procedure is guaranteed 
reduce lhe Euclidean distance, D, between the current set o 
weights, wp and the ideal ones, w ' ~  Assume .that the 'actu 
and ideal systems have the same external inputs an 
thrzsholds, and that T = 1. If the error, r, in the probability 
ratio achieved by ,the actual system is - 

then from equations 4 and 5, we have: 

r= -(E',- E$)+(E,~E~) 
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Before applying the learning rule we have I 

and afterwards 

I .  . . 
= ~ i + ,  - 6(2r- 6.n) . 

So the distance is reduced iff 6 < 2r/n 

where n= z ( h $ p ) 2  = the number of weights that are 
'. changed. ii 

Having a simple convergent learning p r k d u r e  for a non- 
linear system is important because it allows the synaptic 
weights that implement the energy hnction to be 
detemined by feedback from the correclness of the 

rs interpretation that the system settles into. Thus the 
constraints implicit in the task can be programmed into the 
system simply by telling it how well it is doing. 

The learning procedure assumes that the system receives 
feedback from an evaluator that tells it whether the current 
vzlue of 1n(Pa/P ).is grealcr or less than the ideal value P 
1n(PIa/P1 ). This places a very stringent requirement on P 
the evaluator since it ri~ust know about the desired 
probabilities of whole global states like fa. To build these 

. desired probabilities into the evaluator, the representations 
that the system should use must be decided in advance. A 
less omniscient evaluator would only know what some of the 
unils should do for each i n j h  vector and would leavk the 

I I 
syfiern to decide for itself how to use the kemaiining, 
"hidden" units to achieve this. Suppose, for example, that 

' 
there is a setlof global stales Go which only differ BOA one 

I 
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1 / another in the hidden units that the evaluator cannot see. 
: The evaluator specifies required probabilities of the form: 
I 

bur it does not specify'how &e total probability should be 
I distributed over the various states in ad 7he different ways 
, of distributing the probability correspond to using different 

representations in the hidden units. 

lf there are units thzt are hidden from the evaluator, it is 
impossible to define a single hypothetid ideal set of 

' weights. There may be many different complete sets of 
I weights which would yield the required behahour for the 
' "visible" units, and these sets do not, in general, form a 

convex set In travelling towards one suitable set of weights, 
the system may travel away from other equally suitable sets, 
so oonvergence on any one set is not guaranteed. This means 
we need n different measure of the progress of learning in 

a order to prove convergence. A suitable measure is the 
' 

information theoretic distance, G, between the actual and 
required probability distributions over all 2" states of the n 

.-, 
visible uniF: 

The value for G depends implicitly on the w..  and so G can 
B 

be reduced by changhg each weight by an amount that is 
proportional to the partial derivative of G with respect' to 
that weight Weedescribe this learning rule further in Hinton 
and Sejnowski (1983). It is guaranteed to find a minimum of 
G, but it may only be a local minimum rather than a 'globd 
one. Zocal minima occur when the system is doing the best 
tha it can given &e representations it has learni 'in the 
hidden units. To do better it has to change t h s  
representations which involves a temporary setback in 
well it nxels t i e  requirements on the probabilities o 
states of Ihe visible units. Of course, if the modifications 
the weights are probabilistic so that G can sometim 
increase, it is possible to escape from local nlininla 
ensure that after enough learning there is a bias in favo 
the better local minima 

Relation to t h e  brain 

There are two different ways to interpret the input-outpu 
hnction Lhat hardware units should have to implement th 
parallel search (Fig. 1). During a short interval the sigrnoi 
cunrz describes the probability of a unit being in the tnr 
state as a function of Lhe energy gap between the false an 
true states. For much longer Lime intervals the curve 
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