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Synaptic events are often formalized in neural models as stereotyped, 
time-varying conductance waveforms. The most commonly used of such 
waveforms is the a-function (Rall 1967): 

where gsyn is the synaptic conductance and to is the time of transmitter 
release. This function peaks at a value of l l e  at t = to + 7 ,  and decays 
exponentially with a time constant of 7. When multiple events occur in 
succession at a single synapse, the total conductance at any time is a sum 
of such waveforms calculated over the individual event times. 

There are several drawbacks to this method. First, the relationship to 
actual synaptic conductances is based only on an approximate correspon- 
dence of the time-course of the waveform to physiological recordings 
of the postsynaptic response, rather than plausible biophysical mecha- 
nisms. Second, summation of multiple waveforms can be cumbersome, 
since each event time must be stored in a queue for the duration of the 
waveform and necessitates calculation of an additional exponential dur- 
ing this period (but see Srinivasan and Chiel 1993). Third, there is no 
natural provision for saturation of the conductance. 

An alternative to the use of stereotyped waveforms is to compute 
synaptic conductances directly using a kinetic model (Perkel et al. 1981). 
This approach allows a more realistic biophysical representation and is 
consistent with the formalism used to describe the conductances of other 
ion channels. However, solution of the associated differential equations 
generally requires computationally expensive numerical integration. 

In this paper we show that reasonable biophysical assumptions about 
synaptic transmission allow the equations for a simple kinetic synapse 
model to be solved analytically. This yields a mechanism that preserves 
the advantages of kinetic models while being as fast to compute as a 
single a-function. Moreover, this mechanism accounts implicitly for sat- 
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uration and summation of multiple synaptic events, obviating the need 
for event queuing. 

Following the arrival of an action potential at the presynaptic terminal, 
neurotransmitter molecules, T, are released into the synaptic cleft. These 
molecules are taken to bind to postsynaptic receptors according to the 
following first-order kinetic scheme: 

where R and TR* are, respectively, the unbound and the bound form 
of the postsynaptic receptor, a! and P are the forward and backward 
rate constants for transmitter binding. Letting r represent the fraction of 
bound receptors, these kinetics are described by the equation 

where [TI is the concentration of transmitter. 
There is evidence from both the neuromuscular junction (Anderson 

and Stevens 1973) and excitatory central synapses (Colquhoun et al. 1992) 
that the concentration of transmitter in the cleft rises and falls very 
rapidly. If it is assumed that [TI occurs as a pulse, then it is straight- 
forward to solve equation 3 exactly, leading to the following expressions: 

1. During a pulse (to < t < t l ) ,  [TI = TmaX and r is given by 

r(t - to) = r, + [r(to) - r,] exp[-(t - t0)/7,] 

where 

a Tmax 
Y, = 

Tmax + P 

and 

r, = 
1 

a Tmax + b' 
2. After a pulse (t > tl), [TI = 0, and r is given by 

If the binding of transmitter to a postsynaptic receptor directly gates 
the opening of an associated ion channel, then the total conductance 
through all channels of the synapse is v multiplied by the maximal con- 
ductance of the synapse, &,,. Response saturation occurs naturally as r 
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approaches 1 (all channels reach the open state). The synaptic current, 
Isynr is given by the equation 

where Vsyn is the postsynaptic potential, and Esyn is the synaptic reversal 
potential. 

These equations provide an easily implemented method for comput- 
ing synaptic currents and have storage and computation requirements 
that are independent of the frequency of presynaptic release events. To 
simulate a synaptic connection, it is necessary only to monitor the state 
of the presynaptic terminal and switch from equation 5 to equation 4 for 
a fixed time following the detection of an event. At each time step, this 
method requires the storage of just two state variables [either to and (to) 
or tl and r(tl)], and the calculation of a single exponential (either equa- 
tion 4 or equation 5). This compares favorably to summing a-functions, 
which requires storage of n release times and n corresponding exponen- 
tial evaluations, where n is the product of the maximum frequency of 
release events and the length of time for which the conductance wave- 
form is calculated. 

The parameters of the kinetic synapse model can be fit directly to 
physiological measurements. For instance, duration of the excitatory 
neurotransmitter glutamate in the synaptic cleft has been estimated to 
be on the order of 1 msec at concentrations in the 1 mM range (Clements 
et al. 1992; Colquhoun et al. 1992). Figure 1 shows simulated synaptic 

Figure 1: Facing page. Postsynaptic potentials from receptor kinetics. Presy- 
naptic voltage, Vpre (mV); concentration of transmitter in the synaptic cleft, 
[TI (mM); fraction of open (i.e., transmitter-bound) postsynaptic receptors, r; 
synaptic current, Isyl, (PA); and postsynaptic potential, Vsyn (mV), are shown for 
different conditions. (A) A single transmitter pulse evokes a fast, excitatory con- 
ductance (a! = 2 msec-' mMpl, P = 1 msecpl, ESy, = 0 mV). (B) A train of presy- 
naptic spikes releases a series of transmitter pulses evoking excitatory synaptic 
conductances (parameters as in A). C and D correspond to A and B, but with 
parameters set for slower, inhibitory synaptic currents (a = 0.5 msecp' mM-', 
p = 0.1 msecp', Esyl, = -80 mV). For all simulations, the synaptic current was 
calculated using equations 4-6, with gsy, = 1 nS, T,,, = 1 mM, and transmitter 
pulse duration (tl - to)  = 1 msec. Membrane potentials were simulated using 
NEURON (Hines 1993). Presynaptic and postsynaptic compartments were de- 
scribed by single-compartment cylinders (10 pm diameter and 10 pm length) 
with passive (leak) conductance (specific membrane capacitance of 1 p~/crn', 
specific membrane resistance of 5000 0-cm2, leak reversal potential of -70 mV). 
Presynaptic action potentials were modeled by standard Hodgkin-Huxley ki- 
netics. A transmitter pulse was initiated when Vp, exceeded a threshold of 
0 mV, and pulse initiation was inhibited for 1 msec following event detection. 



Computing Synaptic Conductances 17 

events obtained using these values. Figure 1A and B show fast, excitatory 
currents resulting from a single synaptic event and a train of four events. 
Note that the time course of the postsynaptic potential resembles an a- 
function even though the underlying current does not. Figure 1C and 
D show the time courses of the same variables for a slower, inhibitory 
synapse. In this case the rates for a and /3 were slower, allowing a more 
progressive saturation of the receptors. 

We have presented a method by which synaptic conductances can 
be computed with low computational expense using a kinetic model. 
The kinetic approach provides a natural means to describe the behavior 
of synapses in a way that handles the interaction of successive presy- 
naptic events. Under the same assumption that transmitter concentra- 
tion occurs as a pulse, more complex kinetic schemes can be treated 
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in a manner analogous to that described above (Destexhe et al. in prepa- 
ration). The "kinetic synapse" can thus be generalized to give various 
conductance time courses with multiexponential rise and decay phases, 
without sacrificing the efficiency of the first-order model. 
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