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The prefrontal cortex encodes and stores numerous, often dis-
parate, schemas and flexibly switches between them. Recent
research on artificial neural networks trained by reinforcement
learning has made it possible to model fundamental processes
underlying schema encoding and storage. Yet how the brain is
able to create new schemas while preserving and utilizing old
schemas remains unclear. Here we propose a simple neural net-
work framework that incorporates hierarchical gating to model
the prefrontal cortex’s ability to flexibly encode and use multiple
disparate schemas. We show how gating naturally leads to trans-
fer learning and robust memory savings. We then show how neu-
ropsychological impairments observed in patients with prefrontal
damage are mimicked by lesions of our network. Our architecture,
which we call DynaMoE, provides a fundamental framework for
how the prefrontal cortex may handle the abundance of schemas
necessary to navigate the real world.

neural networks | gating | prefrontal cortex | lifelong learning |
reinforcement learning

Humans and animals have evolved the ability to flexibly and
dynamically adapt their behavior to suit the relevant task at

hand (1). During a soccer match, at one end of the pitch, a player
attempts to stop the ball from entering the net. A few moments
later at the opposite end of the pitch, the same player now tries to
put the ball precisely into the net. To an uninitiated viewer, such
apparently contradictory behaviors in nearly identical settings
may seem puzzling, yet the ease with which the player switches
between these behaviors (keep ball away from net or put ball
into net) highlights the ease with which we adapt our behavior
to the ever-changing contexts (near own net or opposing team’s
net) we experience in the world. A bulk of evidence from obser-
vations of humans with prefrontal cortical lesions, neuroimag-
ing studies, and animal experiments has indicated the impor-
tance of the prefrontal cortex (PFC) and connected regions in
encoding, storing, and utilizing such context-dependent behav-
ioral strategies, often referred to as mental schemas (2–6).
Yet how the prefrontal and related areas are able to trans-
late series of experiences in the world into coherent mental
schemas, which can then be used to navigate the world, remains
unknown.

Research in reinforcement learning has helped provide some
insight into how the PFC may transform experiences into oper-
ational schemas (7–9). In reinforcement learning paradigms, an
agent learns through trial and error, taking actions in the world
and receiving feedback (10). Recent work has demonstrated how
recurrent neural networks (RNNs) trained by trial-by-trial rein-
forcement learning can result in powerful function approxima-
tors that mimic the complex behavior of animals in experimental
studies (9).

Although reinforcement learning has provided invaluable
insight into mechanisms the PFC may use, it remains unclear

how the PFC is able to encode multiple schemas, building on
each other, without interference, and persisting so they may be
accessed again in the future. The majority of models capable of
solving multistrategy problems require specially curated training
regimens, most often by interleaving examples of different prob-
lem types (11). Models learn successfully due to the balanced
presentation of examples in training; if the training regimen is
altered—for example, problem types appear in sequence rather
than interleaved, as often happens in the world—the unbalanced
models fail miserably (12).

Some techniques have been proposed to help models learn and
remember more robustly, yet none have established how these
processes may occur together in the brain. For example, contin-
ual learning techniques (e.g., refs. 13 and 14) propose selective
protection of weights. Yet such techniques heavily bias networks
toward internal structures that favor earlier, older experiences
over newer ones and are potentially not biologically realistic (11).
Other models either require explicit storage of past episodes for
constant reference (15, 16), or an “oracle” to indicate when tasks
are “new” (17, 18).

Experimental studies have suggested that areas within the PFC
and related regions may adopt a gating-like mechanism to con-
trol the flow of information in the brain in order to support
complex behaviors involving multiple schemas (19–21). Many
forms of prefrontal gating have been proposed in the literature
to date, including gating of sensory information (22–24), gat-
ing mechanisms to support working memory (25), and gating of
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task-relevant activity (6, 20, 21). Building off experimental find-
ings, computational models incorporating gating have been
developed for action sequences (26) and, particularly, for
working memory (9, 27–31).

Furthermore, experimental and modeling work has suggested
functional divisions within the PFC and neighboring areas (5, 32–
35). Clinical and neuroimaging observations from patients with
prefrontal lesions have strongly linked dorsolateral PFC (dlPFC)
to set-shifting (5, 33, 34). Additionally, some clinical and experi-
mental findings have indicated ventromedial PFC (vmPFC) and
anterior cingulate cortex (ACC) involvement in set-shifting (5,
20, 35), while others have not (5, 34). Notably, although multi-
ple models for working memory mechanisms have been proposed,
there is a lack of models designed to investigate schema encoding
and shifting, linked to functions distributed across dlPFC, vmPFC,
orbitofrontal cortex (OFC), and ACC among other areas.

We hypothesized that, in addition to gating mechanisms
supporting maintenance of working memory, the presence of
structural gating could support manipulation and adaptation of
multiple task-specific schemas in the PFC. Such a network archi-
tecture could learn multiple schemas through reinforcement and
adapt to new environments without “oracle” supervision, while
remaining robust against catastrophic forgetting. To investigate
this, we developed a neural network framework for the PFC
that mirrors the mixture of experts (MoE) class of models (36)
(Fig. 1A). MoE networks are used widely across machine learn-
ing applications (37, 38) and have been shown to support transfer

A B

DC E

Fig. 1. DynaMoE network structure and the WCST. (A) The DynaMoE net-
work is in the MoE family of networks. A gating network takes input
and outputs a decision of which expert network to use (πg) and a value
estimate (vg). The chosen expert network (e.g., E1) takes input and out-
puts an action to take (πE1)—for the WCST, in which stack to place the
current card—and a value estimate (vE1). (B) The WCST. The subject must
sort the presented test card to one of four stacks by matching the rel-
evant sort rule. The subject continues to attempt sorting test cards until
achieving the termination criterion (correctly sorting a given number of
cards consecutively). (C–E) MoE networks on the classic WCST. (C) MoE net-
work with three experts achieves good performance quickly and slowly
improves further over time. (D) MoE network with pretrained experts on the
sort rules also learns quickly, reaching near-perfect performance faster. (E)
DynaMoE network pretrained sequentially on the sort rules learns rapidly
and reaches near-perfect performance fastest. In all plots, blue traces are
from networks during training, and gray traces are random behavior for
reference. Dark gray dashed line in line plots shows the minimum sorts to
criterion.

learning in combination with reinforcement learning (39–42) and
Bayesian nonparametrics (17, 43–47).

Using our network model, we demonstrate how structural gat-
ing naturally leads to transfer learning as new scenarios are
encountered and schemas are encoded. Furthermore, we show
how our network adaptively learns and, due to its architecture,
demonstrates robust memory savings for past experiences. We
implemented lesions to our model to study how functional com-
ponents may become disrupted in disease and found that the
lesions recapitulated specific neuropsychological impairments
observed in patients. Our framework provides a basis for how
the PFC and related areas may encode, store, and access multiple
schemas.

Results
To demonstrate the properties of our framework, we chose the
Wisconsin Card Sorting Task (WCST), a neuropsychological
assessment of PFC function commonly used in clinic (2, 5, 48,
49). In the WCST, a subject is required to sequentially sort cards
according to one of three possible sorting rules: shape, color, or
number (Fig. 1B; see Materials and Methods for full description).
The sorting rule is not explicitly given, but rather must be discov-
ered through trial and error. After each attempted card sort, the
subject receives feedback as to whether the sort was correct or
incorrect. After a set number of correct card sorts in a row, the
sort rule is changed without signal, requiring the subject to adapt
behavior accordingly (5, 49). Performance can be measured by
the number of attempted card sorts until the episode termination
criterion is achieved (“sorts to criterion”; three correct sorts in a
row in our simulations), with fewer attempted sorts representing
superior performance.

The WCST requires the PFC’s abilities to encode, store,
and access multiple schemas. The task requires a recognition
of “rule scenarios” (a form of “set learning”) and flexible
adaptation through reinforcement signals to shift with chang-
ing rules. Patients with prefrontal damage often have difficulty
with this task, with some stereotypically making persevera-
tion errors, indicating an inability to switch rules when given
reinforcement (4, 5).

Although many models are able to solve the classic WCST
(Fig. 1 C–E and SI Appendix, Fig. S6), we sought to use the
WCST to help uncover the mechanisms by which the PFC is
able to learn and remember multiple schemas in the absence of
curated training or supervision. The framework we develop can
be generalized to many similar tasks.

The Model: Dynamic Mixture of Experts. Our neural network archi-
tecture, which we call Dynamic Mixture of Experts (DynaMoE),
combines RNNs used previously to model the function of PFC
(9) with the MoE architecture (36), and introduces two fea-
tures that enable flexible lifelong learning of disparate schemas:
a progressive learning process and repeated focal retuning. Our
MoE design uses two specialized networks: a gating network
that receives input from the external environment and outputs
a decision of which expert network to use and expert networks
that take external input and output an action decision—the card
stack to sort the current card in the WCST (Fig. 1A). To cap-
ture the complex dynamics of the PFC, we modeled both the
gating network and expert networks as RNNs (long short-term
memory networks [LSTMs] in our implementation). While other
architectures have been used in MoE networks, recent work by
Wang et al. (9) demonstrated the ability of RNNs to reliably
store biologically realistic function approximators when trained
by reinforcement learning that mimic animal behaviors.

Using this network architecture, we first introduce a
progressive learning process (Fig. 2B). Our neural network
begins as a gating network with a single expert network (Fig. 2A).
As it gathers experience in the world, it learns in series of
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A

C

B

Fig. 2. Training of a DynaMoE network. (A) DynaMoE begins with a gating network and a single expert network, E1. Both the gating and expert networks
train by reinforcement learning, outputing a predicted value (vg and vE1) and policy (πg and πE1). (B) DynaMoE’s two-step learning process. In stage 1, the
gating network retunes to attempt to solve the task at hand with current experts; if performance is unsatisfactory, the network adds an additional expert
in stage 2 which preferentially trains on tasks that could not be solved by other experts. (C) A sample training trajectory of a DynaMoE network presented
with sequential periods of sorting rules in the WCST. A randomly initialized DynaMoE begins in the shape sorting scenario. First, the gating network is tuned
alone. In the second step of learning, the first expert network, E1, is trained (second half of the blue curve). The sort rule is switched to color (red curve),
and the same two-step training process is repeated, followed by the number sort rule (yellow). The improved performance between the first and second
stages of training in each sort rule scenario results from expert training. The improved performance from gate retuning results from transfer learning from
past experts and increased network capacity. The purple curve shows how DynaMoE rapidly “remembers” past experience due to robust memory savings.
The schematic below the graph shows the progression of the DynaMoE network as it experiences the scenarios. Each stage of training above was done for
625 sorting episodes to display convergent learning behavior.

two-step tunings. When the neural network experiences a sce-
nario (e.g., a series of card sorts in the WCST), it first tunes its
gating network to attempt to solve the problem by optimally del-
egating to expert networks, much as a traditional MoE model
would. If some combination of expert actions results in satisfac-
tory performance, no further learning is necessary. If, however,
the experiences are sufficiently novel such that no combination
of the current expert networks’ outputs can solve the task fully,
the network then brings online a latent untrained expert (Fig. 2 B
and C). The new expert is trained along with the gating network,
resulting in a new expert that handles those problems that could
not be solved with previous experts. Importantly, this training
procedure is agnostic to the order of training scenarios presented
and does not require any supervision. Instead, given only the
desired performance criteria (e.g., level of accuracy) and limit of
training duration per step (how long to try to solve with current
experts), our neural network dynamically tunes and grows to fit
the needs of any scenario it encounters (Fig. 2C). The learning
curves in Fig. 2C reveal two prominent features. First, the speed
of learning is successively faster for the second (55.8% improve-
ment in performance on color sorting with only gate retuning;
“E1 transfer” in Fig. 2C) and third (77.5% improvement in per-
formance on number sorting with only gate retuning; “E1, E2

transfer” in Fig. 2C) scenarios, which is a form of transfer learn-
ing. Second, after learning all three scenarios, relearning the first
scenario (shape sorting) was rapid, a form of memory savings.

The second feature is repeated retuning of the gating net-
work. Training standard neural networks on new tasks leads

to overwriting of network parameters, resulting in catastrophic
forgetting (12) (SI Appendix, Fig. S1). By decomposing a sin-
gle network into a hierarchy of gating and expert networks, we
are able to separate the memory of the neural network into
the “decision strategy” (gate), which maps between inputs and
experts, and the “action strategies” (experts), which map from
input to actions. The hierarchical separation enables repurpos-
ing expertise through combinatorial use of previously acquired
experts and a natural means to confine memory overwriting to
a small portion of the neural network that can be easily recov-
ered through repeated retuning. Experimental evidence suggests
areas of the brain similarly support different levels of plas-
ticity, with regions higher in hierarchical structures exhibiting
increased plasticity (50). The resulting network exhibits memory
savings (51) that remain robust to new learning and lead to rapid
“remembering” rather than relearning from scratch (compare
purple curve in blue shaded region in Fig. 2C and SI Appendix,
Fig. S1).

We found that the implementation of these two features in
a hierarchical MoE composed of RNNs results in an architec-
ture that organically learns by reinforcement relative to past
experiences and preserves memory savings of past experiences,
reminiscent of PFC. Importantly, when presented with the clas-
sic interleaved WCST, our network (Fig. 1E) learns just as fast or
faster than standard RNNs and traditional MoE networks (Fig. 1
C and D and SI Appendix, Fig. S6). We next sought to understand
how our dynamic architecture enabled the observed transfer and
savings.

29874 | www.pnas.org/cgi/doi/10.1073/pnas.2009591117 Tsuda et al.
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Transfer Learning: DynaMoE Seeded with Pretrained Experts. To
probe how the DynaMoE network implements transfer learn-
ing, we first created an easily interpretable scenario in which
two expert networks were separately pretrained on specific rule
sets of the WCST, one on shape sorting (Eshape) and another on
color sorting (Ecolor) (Fig. 3A). We then seeded a DynaMoE net-
work with the two pretrained experts and a randomly initialized
untrained expert, and introduced it to the third rule, number
sorting, and studied its behavior.

Reflexively, one may speculate that a DynaMoE network with
a shape sorting expert, a color sorting expert, and a random net-
work would perform no better on number sorting than with only
a random network, since number sorting is seemingly indepen-
dent of shape or color. Somewhat surprisingly, we found this was
not the case. After tuning the gating network, the DynaMoE net-
work with pretrained experts performed drastically better than
without them, nearly reaching perfect performance (Fig. 3B).
We found that the gating network learned to identify cards
for which the shape or color sort matched the correct num-
ber sort, and allocate them to the corresponding expert. For
example, a card with one blue triangle would be sorted to
stack 1 in both the shape (triangle) and number (one) scenar-
ios (“shape-match-number”). Similarly, some cards, for example
the card with one red circle, would be sorted to stack 1 in
both the color (red) and number (one) scenarios (“color-match-
number”). The gating network learned to map these cards to
Eshape and Ecolor to perform correct card sorts in the number rule
(Fig. 3C). Only cards for which the number sort did not match
the shape or color sort (“no-match-number”) were unsolvable
with either Eshape or Ecolor; for these cards, the gating network
used a mixture of the shape, color, and untrained expert net-
works (Fig. 3 C, Right), since no expert could reliably sort these
cards correctly. The network had learned to exploit a hidden

intrinsic symmetry between the features in the task to enhance
performance.

Consequently, when the new expert network was brought
online and trained (Fig. 3D), the gating network allocated a large
proportion of “no-match-number” cards to the new expert (E3)
(Fig. 3 F, Right). E3’s expertise thus became number sorting
cards that do not match shape or color sorts. Interestingly, this
demonstrates a form of transfer learning. The gating network
learned to use existent experts to find partial solutions for new
problems, leaving unsolvable parts of the problem to be dispro-
portionately allocated to the new expert in the second step of
training. New experts thus learn relative to old experts, building
on prior knowledge and experience.

In practice, the expertise of E3 varied between number sort-
ing predominantly “no-match-number” cards and all cards. This
likely reflects a trade-off between the complexity of mapping
functions the gating and expert networks must learn. In the num-
ber sorting scenario, the gating network can learn to map each
card type to the appropriate expert or the simpler function of
mapping all cards to E3; E3, in turn, learns to number sort only
“no-match-number” cards or all cards. This highlights a trade-
off that occurs in biological systems like the brain. We may be
able to solve a new problem by piecing together numerous tiny
bits of completely disparate strategies, but as complexity of the
mapping function increases, at some point, it becomes more effi-
cient to simply learn a separate strategy for the new problem,
allocating dedicated memory for it.

We found that, in the first stage of training, tuning of the
gating network consistently led to a mapping function that allo-
cated the vast majority of “shape-match-number” cards to Eshape
and “color-match-number” cards to Ecolor (Fig. 3C). “No-match-
number” cards were allocated between all three experts. After
the second stage of training in which both the gating network

0

A CB

D
F

E

Fig. 3. Transfer learning with a seeded DynaMoE network. (A) A DynaMoE network seeded with pretrained shape and color experts and a randomly
initialized untrained network. (B) The DynaMoE network from A achieves near-perfect performance in number sorting when only the gating network is
trained (blue) in contrast to a network with only an untrained expert (gray). Inset shows that performance of the seeded network does not reach the
minimum sorts to criterion (gray dash) without training the third expert network. (C) The proportion of cards allocated to each expert network after the
training in B in three different subsets of the number sort rule: shape-match-number (Left), color-match-number (Center), no-match-number (Right). (D)
Seeded DynaMoE network with trained Expert3 network. (E) Performance (measured by decrease in sorts to criterion) of two example training runs from
the same initial network (A–C) that result in different end behavior (see F). The performances of both runs improve from DynaMoE with an untrained expert
(B, Inset) and are indistinguishable from each other. (F) (Top) Proportion of experts used in same subsets of number sort rule as in C [shape-match-number
(Left), color-match-number (Center), no-match-number (Right)] for an example run (run 1). A varying decision rate for experts is used depending on the
scenario subset. (Bottom) Proportion of experts used for a second example run (run 2). The new expert (E3) is used regardless of subset of number sort rule.
See SI Appendix, Fig. S2 for all 10 runs. Error bars are SD over 1,000 test episodes after training. Absence of bar indicates zero selections of the given expert
during testing.
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and E3 are trained, we found that the “no-match-number” cards
were almost entirely allocated to E3, as expected (Fig. 3 F, Right).
We found that usage of experts for “shape-match-number” and
“color-match-number” cards varied across different training runs
(Fig. 3F and SI Appendix, Fig. S2). To see how often training
led to different expert network decision rates, we ran the sec-
ond stage of training 10 times from the same initial network that
had gone through the first stage of training. Usage of the rel-
evant pretrained expert (e.g., Eshape for “shape-match-number”
cards) ranged from as much as 65% to as low as 1%, repre-
senting end behavior in which Eshape and Ecolor continued to be
used or in which E3 was used almost exclusively (run1 and run2,
respectively, in Fig. 3F). The nonrelevant expert (e.g., Ecolor for
“shape-match-number” cards) was rarely ever used (0 to 5%).
This shows that, while DynaMoE networks support pure transfer,
the degree of transfer learning implemented depends on network
capacity, learning efficiency, and the stochastic nature of learn-
ing. All networks achieved the same near-perfect performance
stop criteria within similar numbers of sorting episodes (Fig. 3E;
see Materials and Methods).

Transfer Learning: Organic Case. To probe how a DynaMoE net-
work naturally implements the transfer learning described in the
previous section, we trained 10 DynaMoE networks indepen-
dently from scratch through sequential experiences of the differ-
ent rules of the WCST. Each network began with an untrained
gating network and expert network (E1). The DynaMoE net-
works were then trained on shape followed by color and then
number sorting, adding a new expert in each new sort rule
scenario (see Materials and Methods).

As expected from the result in the previous section, we found
that the expert networks were not pure rule sorters but rather
had learned an expertise in a mixture of rule types relative
to the other experts. For each sort rule scenario, one expert
network was used preferentially (E1 for the first rule expe-
rienced, E2 for the second, etc.), which we refer to as the
“dominant expert network” for that sort rule scenario. To quan-
tify the degree of transfer learning utilized, we measured the
usage of all three expert networks in the different sorting sce-
narios. For each sort rule scenario, the gating network was
retuned until “expert performance” was once again attained. We
then measured the usage of each of the nondominant expert
networks with respect to usage of the dominant expert net-
work. Although the magnitude of relative usage varied between
independent runs, a consistent pattern emerged. In the shape
sort scenario—the first scenario encountered with only E1—
E2 and E3 were used very little or never (Fig. 4 A, Left). For
the second scenario encountered—color sort scenario—E1 was
used a small amount, and E3 was never used (Fig. 4 A, Cen-
ter). Finally, for the third scenario—number sort scenario—E1

and E2 were used a small but significant portion of the time
(Fig. 4 A, Right).

This trend of increased usage of experts that were present dur-
ing the learning of a rule compared to experts added afterward
strongly indicates transfer learning as the DynaMoE network
encountered new scenarios (Fig. 4B). Newly added experts pre-
dominantly trained on examples that the other experts could not
solve. Thus, when the gating network was retuned to solve a
scenario later, it continued to use the previously added experts.
In contrast, if an expert was added after the learning of a sce-
nario, all of the knowledge to solve the scenario was already
contained in the existent experts, so the expert added after learn-
ing was rarely used. This shows that new experts were trained
relative to knowledge contained by existent experts. Further-
more, while the aggregated expert use percentages clearly show
the presence of transfer learning, they mute the degree of trans-
fer learning adopted by some individual networks (SI Appendix,
Fig. S3).

A B

Fig. 4. Transfer learning in an unseeded DynaMoE network. (A) The rela-
tive use of each expert network in each sort rule [shape (Left), color (Center),
number (Right)] normalized to the dominant expert for the sort rule from
10 independent DynaMoE networks trained in a sequential training regi-
men (see Materials and Methods). The greyed out expert network label with
lightest gray bar of value 1 indicates the dominant expert network for each
sort rule. Darker gray bars indicate usage of experts that were not present
during initial training of the given sort rule (e.g., E2 and E3 for the shape
rule). Green bars indicate experts that were present during initial training
of the given sort rule (e.g., E1 and E2 for the number rule). Absence of a
bar indicates the given expert was never used. Error bar is SEM over 10
independent runs (SI Appendix, Fig. S3). (B) Aggregated bar plot from A
grouped by whether the expert was added before or after initial training
on the rule. Use of experts present during initial training of a rule indicates
transfer learning (green bar), while use of experts not present during initial
training indicates nontransfer usage (gray bar). The usage of experts added
before was significantly higher (*P< 0.01; P = 1.16e− 05, Student’s t test)
than that of experts added after initial training on a rule. Error bar is SEM.

Robust Memory Savings. A critical feature of the PFC is the ability
to retain knowledge from past experiences in the form of learned
connectivity patterns (52). Many neural network models suffer
from castastrophic forgetting (12), overwriting information from
previous experiences. Put in terms of network parameters, when
such networks retune weights to solve new problems, they move
to an optimal point in weight space for the current task which can
be far away from the optimal space for previous tasks.

In contrast, DynaMoE networks, like the PFC, maintain
near-optimal configuration for previously experienced scenarios,
exhibiting “memory savings” (51). The hierarchical architecture
of DynaMoE networks confines memory loss to a small flexi-
ble portion of the network: the gating network. If a scenario has
been encountered before, retuning the gating network to optimal
configuration is rapid, requiring only a small number of rein-
forcement episodes (Fig. 5 A and B and SI Appendix, Fig. S5).
Retuning the gating network requires much less movement in
weight space compared to standard RNNs, since tuning is con-
fined to only the gating network. This is in stark contrast to
standard neural networks which can require complete retraining
(Fig. 5C and D and SI Appendix, Fig. S4).

To measure the memory savings of DynaMoE networks, we
sequentially trained networks with identical presentations of,
first, shape, then color, then number sorting scenarios (see Mate-
rials and Methods). We then tested how many sorting episodes
of reinforcement were required for the network to regain exper-
tise in the first sorting rule it experienced (shape). As Fig. 5 A
and B show, DynaMoE networks required 78% fewer episodes
to regain expertise than standard RNNs (p=2.49e − 11, Stu-
dent’s t test). The number of episodes required to remember
was drastically fewer than when they first learned the rule,
whereas standard RNNs improved only slightly compared to
when they first learned the rule (SI Appendix, Figs. S1, S5,
and S6). While standard RNNs nearly completely overwrote
the information learned through initial training, DynaMoE net-
works preserved their memory and only required brief rein-
forcement for the gating network to remember how to allocate
cards to experts.
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A B

C D

Fig. 5. Robust memory savings of DynaMoE. (A) Example of performance
over sorting episodes of retraining of standard RNN (blue) and DynaMoE
network (orange) on a previously encountered task. Shading indicates SD
over 10 independent retraining runs. (B) Average number of sorting episodes
required until expert performance for standard RNN and DynaMoE net-
works over 10 independently trained networks of each type. DynaMoE
networks require 78% fewer sorting episodes (abbreviated in barplot as
sorting ep.) to remember (*P< 0.01; P = 2.49e− 11, Student’s t test). (C)
Visualization of top three principal components of weight space for 10
relearning/remembering trajectories of an example standard RNN and a
DynaMoE network trained sequentially. (D) Euclidean distance between net-
works before and after remembering previously learned rule in full weight
space (average of 10 independently trained networks of each type). DynaMoE
network moves 40% less in weight space compared to the standard RNN
(*P< 0.01; P = 7.43e− 05, Student’s t test). Error bars are SEM.

To measure the weight changes required to regain optimal
performance, we measured the distance in weight space each of
the networks traversed when remembering the shape sort rule
after sequential training. DynaMoE networks traversed 40% less
distance in weight space to reach optimal performance com-
pared to standard RNNs (p=7.43e − 05, Student’s t test; Fig. 5
C and D and SI Appendix, Fig. S4). Even after sequential training,
DynaMoE networks remain relatively close in weight space to
the optimal performance configurations on all previously experi-
enced tasks. In contrast, standard RNNs moved far from their
initial optimal point in weight space for the shape scenario,
resulting in movement of nearly equal distance when relearn-
ing the shape scenario as when initially learned (SI Appendix,
Fig. S4).

Lesions of DynaMoE Cause PFC Lesion-like Impairments. The
DynaMoE framework provides an opportunity to understand
how disruptions to specific functional aspects of the PFC and
related areas can lead to different neuropsychological impair-
ments observed in clinical cases. Numerous clinical and neu-
roimaging studies have indicated regional specialization within
the PFC, yet evidence from human studies is invariably messy,
involving overlapping brain regions and varying degrees of
impairment in different aspects of tasks (2, 5, 53). Our frame-
work enables targeted disruption of specific functional com-
ponents of our network that may help clarify the underlying
organization of the human PFC. The WCST has served as a stan-
dard clinical assessment to evaluate PFC impairment (5), making
it an ideal task with which to analyze functional consequences of
various lesion types.

To assess how lesions of our network architecture could result
in behavioral impairments, we damaged specific regions of the
gating network of our architecture. Importantly, in our lesion
studies, the expert networks were unperturbed, leaving avail-
able the action strategies to perfectly perform the task. This
characteristic is often seen in patients with prefrontal damage:
Although they have difficulty with the full WCST, if explicitly
told which sort rule to use, patients are often fully capable (5,
54). We first trained DynaMoE networks on each rule type, and
then the classic interleaved WCST (SI Appendix, Fig. S6E; see
Materials and Methods). We then lesioned the gating network
and performed testing on the classic WCST to assess changes
in performance and behavior.

Lesions were targeted to five different regions within the
gating network (Fig. 6A): inputs to the network (red region
1 in Fig. 6A)—ablation of reward feedback (L1), action feed-
back (L2), or both (L3); internal network dynamics (region
2)—ablation of varying numbers of synaptic connections to the
“forget” gate of the LSTM (L40.5 and L40.9 were 50% and 90%
ablations of synaptic connections, respectively; see SI Appendix,
Fig. S7 A and B for full range); output of the network (region 3;
L5); and areas downstream of the network—ablation of synaptic
connections to the units that determined which expert network to
use (region 4; L6), to the unit that estimated value (region 5; L8),
or both (L7; SI Appendix, Fig. S7 C and D for full range). Since
lesions could potentially have differential effects depending on
the specific disruptions incurred, we performed each lesion 10
times and measured the average effect.

We found that different lesion types resulted in different
degrees of impairment, ranging from no change in error rate
(e.g., L80.9, p=0.3664, Student’s t test) to 10.5-fold more errors

A B

C

Fig. 6. Different lesion-induced error modes of DynaMoE gating networks.
(A) Map of lesioned regions in DynaMoE’s gating network. Three lesions of
input (region 1) were done (L1 to L3), one lesion of the network dynamics
(region 2; L4), one lesion of network output (region 3; L5), one lesion of deci-
sion determination (region 4; L6 and L7), one lesion of value determination
(region 5; L7 and L8). (B) Average number of errors per episode for each lesion
type. L1 is ablation of reward feedback from previous trial; L2 is ablation of
action feedback from previous trial; L3 is simultaneous L1 and L2 lesions; L40.5

is ablation of 50% of connections to forget gate of network, and L40.9 is abla-
tion of 90%; L5 is ablation of output units; L6 is ablation of connections to
decision units (π); L8 is ablation of connections to value unit (v); L7 is simul-
taneous L6 and L8. Asterisk indicates significant difference from no lesion
(L0) (Student’s t test; *P< 0.05; **P< 0.01; ***P< 0.001) (C) Proportion of
increase in errors that were perseveration errors for lesions that caused sig-
nificant increase in errors. Asterisk indicates confidence interval (CI) excluding
zero (*: 95% CI; **: 99% CI). All error bars are SEM.
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(L3, p=2.1268e − 25, Student’s t test) than before the lesion
(Fig. 6B and SI Appendix, Table S1). Since perseverative errors
are a signature of some prefrontal lesions, particularly associ-
ated with dlPFC impairment, we measured the proportion of the
increase in error rate that was due to perseverative errors (“per-
severation proportion”; a negative value indicates a decrease in
perseverative errors relative to no lesion). Fig. 6C shows the vari-
ability in perseveration proportion for the lesions that caused a
significant increase in error rate. To ensure that the error profiles
we observed were not an artifact due to the presence of ambigu-
ous cards for which sorting by multiple rules could result in the
same action decision, we also tested the lesioned networks with
the card deck from the Modified WCST (MWCST) (5, 55), in
which all ambiguous cards are removed, and found qualitatively
similar results (SI Appendix, Fig. S8).

The neuropsychological impairment profiles defined by
increase in total error and perseveration proportion reveal dif-
ferent lesion-specific error modes that mirror the different error
modes observed from patients across the range of prefrontal
lesions (Fig. 6 and SI Appendix, Table S1). Overall, lesions
grouped qualitatively into three categories: lesions that caused
often substantially increased total error rate (1.72× to 10.51×),
a small proportion of which were perseverative errors (−1.18 to
1.79%) (regions 1, 3, and 4; L1 to L3, L5 to L7); lesions that
caused a small but significant increase in total errors (1.18× to
1.65×), a large proportion of which were perseverative errors
(9.36 to 10.59%) (region 2; L4); and lesions that caused no
change in error rate (region 5; L8).

Our lesion results provide a roadmap with which to inter-
pret and understand the variety of error modes observed in
human patients with prefrontal damage due to trauma or dis-
ease. While the PFC as a whole has been definitively linked
to set-shifting and cognitive flexibility, localization of functional
components to specific subregions remains unclear. Lesions
throughout the prefrontal areas have been associated with
impairments observed in the WCST, ranging from no change
in error rate to large increases in perseverative and nonperse-
verative error rates similar to the range of behavioral outcomes
resulting from our lesions (5). Canonically, although with mixed
evidence, impairment of the dlPFC is associated with increased
error rate on the WCST, particularly perseveration errors. Our
lesion study indicates this behavioral phenotype may be due to
impairment of gating network dynamics, suggesting the dlPFC
may contribute to a gating-like mechanism within the PFC.
Interestingly, the lesions of components inside the gating net-
work’s recurrent connections that caused a specific increase in
perseverations only weakly increased the total error rate. In
contrast, lesions to input components led to a large increase
in total error, while perseverations increased relatively less.
These contrasting neuropsychological impairments highlight a
double dissociation of neural components underlying persever-
ation errors and total errors, a characteristic also observed
in patients.

Discussion
In this paper, we propose a framework for how the PFC may
encode, store, and access multiple schemas from experiences in
the world. Like the PFC, the DynaMoE neural network is agnos-
tic to training regimen and does not require “oracle” supervision.
We showed how the hierarchical architecture of DynaMoE nat-
urally leads to progressive learning, building on past knowledge.
We then demonstrated how DynaMoE networks reliably store
memory savings for past experiences, requiring only brief gate
retuning to remember. Finally, we showed how lesions to spe-
cific functional components of the DynaMoE network result
in different error modes in the WCST, analogous to the error
modes described for patients with different forms and severity of
prefrontal damage.

The parallels seen between the DynaMoE network and the
PFC and related areas encourages investigation into the extent
to which these two systems recapitulate each other. Perhaps most
poignantly, this comparison puts forth the hypothesis that the
PFC may incorporate a gating system that is tuned to optimally
combine knowledge from past experiences to handle problems
as they are encountered. Some studies have provided evidence
for such a functional architecture in the brain (56), and pre-
frontal cortical areas in particular (6, 19–21). In our model,
each “unit” within our recurrent networks represents a pop-
ulation of neurons, and, as such, inputs to the network were
represented by populations of neurons, each of which receives
multiple inputs and responds with mixed selectivity as has been
observed in PFC (57, 58). Our model also suggests that the
neural representations of different contextual “rules” can dis-
tributed across multiple overlapping subpopulations. In this way,
our model adopts a hierarchy of distributed representations
in which overlapping neural subpopulations support distributed
representations of both lower-level sensory information (inputs)
and higher-level abstract information (context-dependent rules).
Experimental investigations that compare the diverse neural
population activities of DynaMoE networks to that in relevant
prefrontal cortical areas will be fruitful in supporting or refut-
ing our framework. Studies in nonhuman primates with a WCST
analog (6) and related task (20) have reported specific neural
activity patterns associated with set-shifting, suggesting the possi-
bility of direct comparisons to our model; a topic we are currently
exploring.

Our model’s feature of adaptive growth by adding new expert
networks represents the recruitment of neural subpopulations
for new learning. Both the assessment of performance and
recruitment of new subpopulation bring up interesting parallels
in neurophysiological studies (Fig. 2B). Error-related negativ-
ity and positivity signals are well-known phenomena that are
thought to relate to self-assessment of performance, preceding
a switch to an alternative strategy (59). Research on neuromod-
ulation, neuropeptides, and metaplasticity provides evidence for
spatially and temporally regulated plasticity differences in neu-
ral subpopulations (60–64), potentially supporting a dynamic,
regionally selective learning system like DynaMoE. Elaborating
DynaMoE to explicitly model these processes will help untan-
gle how these processes may interact to support behavior and
learning.

The DynaMoE model suggests functional relationships under-
lying organization in the PFC and related areas. The gating
network in the model is reflective of the set-shifting functions
that are closely linked to activity in dlPFC. Our lesions studies
support this association, showing a relative increase in perse-
veration errors with disruption of the gating network internal
dynamics, similar to dlPFC lesions’ association with increased
perseveration errors in patients (33, 34) and increased dlPFC
activity observed in patients during rule shifts (2, 5, 48). However,
the gating network in our model likely incorporates elements that
are distributed anatomically, including processing of error signals
attributed to ACC (20, 65). Other elements of our model may
correspond to adjunct prefrontal regions. For example, value
tracking functions attributed to OFC—medial OFC in particular
(66)—may correspond to the value units in both the gating and
expert networks (67). The expert networks in our model corre-
spond to functional elements spanning regions of PFC (perhaps
downstream of dlPFC) to premotor cortex, culminating in an
action decision sent to the motor system to execute in the envi-
ronment. The different expert networks then represent different
effector pathways originating from the gating network signal and
extending to the premotor cortex. These “cognitive maps” rep-
resenting different context-dependent behavioral strategies are
characteristic of areas of OFC (68), perhaps lateral OFC in par-
ticular (66). Both the gating network and the effector expert
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networks also encapsulate cortical–thalamic–basal ganglia loops,
routing and processing sensory information and reward informa-
tion to and from areas of PFC and ACC, nuclei of the thalamus,
and areas of the striatum and other basal ganglia regions (7).
Further comparison between individual functional elements in
our model (e.g., expert networks and OFC) will be helpful in
studying the relationship between subregions of the PFC.

Our model also can be integrated with the anterior–posterior
cascade model of the frontal regions as proposed by Koechlin
and Summerfield (69). From this perspective, the gating network
of our model corresponds to the more abstract contextual infor-
mation in the anterior regions of lateral PFC, while the expert
networks correspond to more immediate context sensory pro-
cessing, taking external input and mapping to an output action.
Our model layers into the anterior–posterior cascade scheme,
providing a mechanism for encoding and flexible usage with
transfer and savings.

Several computational models have provided strong support
for a hierarchical organization in the PFC (31, 69–71). Combin-
ing our model with insights from other models will likely yield
further insights into the architecture and functions of the pre-
frontal areas. Together with Koechlin and Summerfield’s (69)
cascade model, Botvinick’s (71) model of Fuster’s hierarchy
suggests that added layers to a hierarchical structure lead to orga-
nizing principles that map to higher levels of abstraction and
context. Likewise, in our model, the gating network sits above the
expert networks, processing the higher-level context to choose
which expert to use. Understanding how the processing of higher
and lower levels of the task self-organize within the hierarchical
structure, that is, how the division of labor between the levels is
determined, is a fascinating area of future research we are pursu-
ing. Integrating the Hierarchical Error Representation model’s
(70) hierarchical propagation of errors into DynaMoE is also a
promising direction, particularly in understanding the roles and
relationship of dlPFC and ACC.

Our model also relates closely to previous computational
models investigating the emergence of hierarchical rule-like
representations (30, 35). The model proposed by Donoso et al.
(35) to study the medial (vmPFC-perigenual ACC, dorsal ACC,
ventral striatum) and lateral (frontopolar cortex, middle lateral
PFC) tracks’ contribution to strategy inference shares features
with DynaMoE in storing multiple strategies and allowing com-
binatorial use. Our model further posits that a part of PFC,
likely within dlPFC and perhaps spanning to parts of ACC, sup-
ports nonlinear and dynamically evolving combinations of stored
strategies, enabling more powerful transfer learning and reduc-
ing memory requirements. To gain a deeper understanding of
how multischema inference is done in the prefrontal regions, fur-
ther functional MRI studies elaborating on the paradigm used by
Donoso et al. (35) will be important to compare features of their
model to those of the DynaMoE model.

Our lesion studies motivate further investigation of func-
tional specialization in the PFC through comparison of our
framework and clinical, experimental, and neuroimaging stud-
ies (2, 5). Clinical and experimental studies have yielded unclear
and sometimes contradictory findings due to the anatomical
inseparability of PFC functions (5). Although studies have
most clearly linked perseverative abnormalities to dlPFC, sim-
ilar abnormalities can be observed in compulsive behaviors
like alcohol consumption, which depend on strategies gener-
ated by the mPFC that predict individual behavioral patterns
(72). Our model provides full access to the underlying struc-
ture, enabling targeted studies to use as a reference for inter-
preting human and animal studies. Further comparison of our
framework with in-depth phenotypic analyses across various
tasks may help us understand the functional organization of
the PFC and the consequences of disruptions due to trauma
and disease.

Our lesion analysis also motivates future studies on adapta-
tion to lesions. In the present study, we focused on lesions after
learning was complete, since most clinical case reports describe
testing of patients after acute injury. In clinic, it is also important
to understand how patients may cope and adapt after a lesion has
occurred. The DynaMoE framework may be useful for studying
the effects of lesions on learning and adaptation.

The DynaMoE framework also has interesting implications for
areas of machine learning. It combines the advantages of prior
models that leverage transfer learning in the MoE architecture
with reinforcement learning (39–42) and Bayesian nonparamet-
ric MoE models (17, 43–47). DynaMoE’s organic, unsupervised
implementation of transfer may be useful for intractable prob-
lems that may be handled piecewise in a way that may be
nonobvious to an “oracle” supervisor. By letting the model learn
how to grow and structure itself, our framework puts the bur-
den of optimally solving complex problems on the algorithm.
This may significantly improve progress, by removing the need
for careful curation of training data and training regimen.

The form of transfer learning demonstrated by our dynamic
architecture—acquiring new knowledge (new expert) based on
indirect knowledge of what other parts of the network (old
experts) know—has not been reported before, to our knowl-
edge. This form of transfer learning is reminiscent of “learning by
analogy,” a learning skill humans are very good at but machines
continue to struggle with (73, 74). Through our framework, this
dynamic form of transfer could be extended to much larger net-
works, utilizing a myriad of experts. Such a framework could be
useful both as a model of the brain and for machine learning
applications.

Finally, our framework provides a method for lifelong learn-
ing and memory. Major challenges persist in developing meth-
ods that do not get overloaded but also scale well to lifelong
problems (75). Similar to “grow-when-required” algorithms, our
network adds capacity when necessary. However, our network
also leverages already acquired knowledge to help solve new
problems, reducing demand for growth. This feature supports
scalability, which both the brain and machine learning meth-
ods must support, given their limited resources. Elaborating
and adapting DynaMoE to more complex tasks and incorpo-
rating other techniques such has simultaneous combinatorial
use of experts will lead to exciting steps forward in lifelong
learning.

Materials and Methods
Behavioral Task. To demonstrate our framework, we used the WCST. In this
task, the subject is asked to sort cards. Each card has symbols with a shape
type (triangle, star, cross, or circle), a color type (red, green, yellow, or blue),
and a specific number of symbols (one, two, three, or four). During each
episode, an unsignaled operating rule is chosen: either shape, color, or num-
ber. The subject must discover the rule by trial and error and then sort a
given card into one of four stacks, according to the relevant rule. The first
stack, stack 1, has one red triangle, stack 2 has two green stars, stack 3 has
three yellow crosses, and stack 4 has four blue circles (Fig. 1B). After each
attempted card sort, the subject is given feedback as to whether the sort
was correct or incorrect. Once the subject has sorted a given number of
cards correctly consecutively, the operating rule is switched without signal,
and the subject must discover the new rule through trial and error. For all
of our simulations, the operating rule was switched after three correct sorts
in a row.

At the beginning of each episode, a deck of cards containing all 64
possible combinations of shape, color, and number was generated. Cards
were randomly drawn from this deck and presented to the subject for sort-
ing, removing each card from the deck after presentation. If all 64 cards
from the deck were used before termination of the episode, the deck was
regenerated, and new cards continued to be drawn in the same manner.
An episode was terminated by meeting one of two termination criteria: 1)
achieving the given number of correct sorts in a row (three for our sim-
ulations) or 2) reaching the maximum episode length, which we set to
200 card draws.
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In our sequential scenario training simulations, a particular operating
rule was kept constant for the duration of training in that period, either
until a given number of sorting episodes was achieved or until performance
passed a satisfactory threshold. In the next training period, a new operat-
ing rule was held constant, and training was repeated in the same manner.
As a demonstration, a DynaMoE network was trained in a sequential train-
ing protocol with sequential blocks of 1,250 sorting episodes (one “sorting
episode” ≈ 12 total WCST episodes across whole network) of each sort
rule type (Fig. 2C). Each 1,250 sorting episode block was split into two
625 sorting episode subblocks; in the first subblock, the gating network
was tuned, and, in the second, both the gating and new expert network
were tuned. To evaluate the degree of transfer learning, a moving mean
over every 100 sorting episodes was taken for the periods of isolated gate
retuning (no expert training), and the minimum value was compared to
the minimum value of the initial network before training any expert (base-
line without transfer). When the shape sort rule was reintroduced, only the
gating network was tuned. The 1,250 sorting episode block training pro-
tocol described above was also done with a standard RNN, for comparison
(SI Appendix, Fig. S1). In all line plots of sorts to criterion over training, a
moving mean over every 10 sorting episodes was calculated and plotted for
readability.

Reinforcement Learning Training. To train our networks with reinforcement
learning, we used the Advantage Actor-Critic algorithm of Mnih et al. (76),
where a full description of the algorithm can be found. Briefly, the objective
function for our neural network consists of the gradient of a policy term, an
advantage value term, and an entropy regularization term,

∇L=∇Lπ +∇Lv +∇LH

=
∂logπ(at|st ; θ)

∂θ
δt(st ; θ) + βvδt(st ; θ)

∂V

∂θ
+ βH

∂H(π(at|st ; θ))

∂θ
,

where π is the policy, at is the action taken at time t, st is the state at time t,
θ is the network parameters, βv , βH are hyperparameters for scaling the con-
tribution of the value and entropy terms, respectively, V is the value output
of the network, and H is the entropy regularization term of the policy. δt is
the advantage estimate, which represents the temporal difference error,

δt(st ; θ) = Rt −V(st ; θ),

where Rt is the discounted reward,

Rt =

k−1∑
i=0

γ
irt+i + γ

kV(st+k; θ),

where k is the number of steps until the next end state. When γ= 0, Rt = rt .
The advantage equation in this case is equivalent to a tempo-

ral difference error signal, enabling temporal difference reinforcement
learning.

The parameters of the model were updated, during training, by gradient
descent and back propagation through time after the completion of every
three episodes. For all simulations, we used 12 asynchronous threads for
training. In our plots, a single “sorting episode” was defined as the num-
ber of total WCST episodes completed while a single thread completed one
episode, which was roughly equal to 12 episodes for the total network. We
used the AdamOptimizer with a learning rate of 1e-03 to optimize weights.
The objective function scaling hyperparameters βv and βH were both set to
0.05 for all our simulations.

For feedback as to whether each card sort was correct or incorrect, we
gave a reward of +5 if correct and −5 if incorrect. For the WCST, a discount
factor of γ= 0 was used, since each card sort was an independent event,
based only on the relevant operating rule rather than any prior previous
action sequence.

Similar to the implementation by Wang et al. (9), the input to the net-
works for each step was given as vector with the current card shape, color,
and number, the action taken for the previous time step, at−1, and the
reward given for previous card sort action, rt−1.

Network Architecture. Both our standard RNN and DynaMoE network archi-
tectures were composed of LSTMs as implemented by Wang et al. (9)
(for details, see SI Appendix, Supporting Information Text). In contrast to
“vanilla” RNNs, LSTMs copy their state from each time step to the next by
default and utilize a combination of built-in gates to forget, input new
information, and output from the states. This RNN structure allows for

robust learning and storage of function approximators for various tasks, as
demonstrated by Wang et al. (9). The LSTM states and gates are described
by the following equations:

ft =σ(Wxf xt + Whf ht−1 + bf )

it =σ(Wxixt + Whiht−1 + bi)

ot =σ(Woxxt + Whoht−1 + bo)

ct = ft ◦ ct−1 + it ◦ tanh(Wxcxt + Whcht−1 + bc)

ht = ot ◦ tanh(ct),

where ft , it , and ot are the forget, input, and output gates, respectively, at
time t; σ is the sigmoid activation function; Wij denotes the weights from
component i to component j; xt is the external input at time t; ht is the
ouput of the LSTM at time t; ct is the state of the LSTM cell at time t; bf , bi ,
and bo are the biases of the forget, input, and output gates, respectively; bc

is the bias of the cell states; and ◦ denotes the Hadamard product.
For all our simulations described in the paper, we used a standard

RNN of 105 units and a DynaMoE network with a 98-unit gating network
and 19 unit experts. We chose these network sizes because they provided
ample capacity to learn the WCST scenarios and shared the same number
of total trainable network parameters (47,145), which enabled the direct
comparisons between standard RNN and DynaMoE networks.

In DynaMoE networks, if the gating network could not solve a scenario
using its current experts, a new expert was brought online. In this case,
first, the gating network was retuned with the current experts and an addi-
tional randomly initialized expert of the same size. If performance did not
achieve the desired performance criterion, the gating network and the new
expert were then trained simultaneously. The gating network LSTM learned
a function approximator mapping from inputs to experts, and the experts
learned function approximators mapping from inputs to actions in their
input domain of expertise, which was determined by the gating network’s
mapping function.

DynaMoE Seeded with Pretrained Experts Transfer Simulations. For our
demonstration of DynaMoE networks’ transfer learning property, we per-
formed a simulation with pretrained experts. We trained one expert on only
shape sorting until the expert network achieved near-perfect “expert per-
formance,” defined in this simulation as an average sorts to criterion of less
than four in the last 100 episodes of a single asynchronous thread (minimum
sorts to criterion is three). We repeated the same with a second expert net-
work trained on only color sorting. We then created a DynaMoE network
with these two pretrained expert networks and a third randomly initialized
expert network, and trained the gating network only on the number sort-
ing rule for 7,500 sorting episodes to ensure convergent decision behavior.
“Expert performance” as defined above was not achieved during this stage
of training (Fig. 3 B, Inset). Network weights were then fixed, and behavior
and performance of the network was evaluated. To evaluate behavior of the
network, 1,000 test episodes were performed in the number rule, and the
proportion of decisions to use each expert network (the decision rate) was
measured in subsets of the number rule described in Results (“shape-match-
number,” “color-match-number,” and “no-match-number”; Fig. 3C). From
this parent network, we then ran 10 independent training runs in parallel
in which the gating network and the randomly initialized expert network
were trained simultaneously on the number sorting rule until the “expert
performance” criteria was achieved. To evaluate the decision rate of the
gating network for each of the 10 independent training runs, 1,000 test
episodes were performed, and the mean and SD of the decision rates were
calculated in the same subsets of the number rule (Fig. 3F and SI Appendix,
Fig. S2).

Organic Transfer Simulations. For our demonstration of the DynaMoE net-
work’s implementation of transfer learning without any pretraining, we
independently trained 10 DynaMoE networks from scratch in the following
manner. We began with a randomly initialized gating network with a single
randomly initialized expert network. The gating network was then trained
alone on the shape sort scenario of the WCST for 1,250 sorting episodes.
The gate and single expert network were then trained simultaneously until
“expert performance,” defined, for this simulation, as an average sorts to
criterion of less than four in the last 100 episodes of a single asynchronous
thread. A new randomly initialized expert network was then added, and
the gating network was trained for 7,500 sorting episodes in the color sce-
nario to allow full convergence of decision behavior. The gate and new
expert were then trained simultaneously until “expert performance” was
achieved. This was repeated finally for the number scenario and a third
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expert network. To evaluate transfer, for each sort rule, we retuned the
gating network until expert performance was achieved. The gating net-
work was then tested for 1,000 episodes in the given sort scenario, and the
relative expert network use was measured as described in Additional Data
Analysis (Fig. 4 and SI Appendix, Fig. S3).

Robust Memory Savings Simulations. To demonstrate the DynaMoE net-
work’s robust memory savings, we independently trained 10 DynaMoE
networks and standard RNNs with the same number of trainable parame-
ters (47,145) in an identical presentation of scenarios. First, the randomly
initialized networks trained on 1,250 sorting episodes of the shape sort sce-
nario to ensure convergent performance. This was followed by 1,250 sorting
episodes of the color sort scenario, followed by 1,250 sorting episodes of
the number sort scenario (same as for networks in Fig. 2C and SI Appendix,
Fig. S1). For the DynaMoE network, each block of 1,250 sorting episodes
with a sort rule was broken into two subblocks of 625 sorting episodes; in
the first 625 sorting episodes, the DynaMoE network did the first stage of
training in which only the gating network is tuned, and, for the second 625,
the second stage of training was done in which both the gating and new
expert networks are tuned simultaneously. After this sequential scenario
training, for each standard RNN and the DynaMoE network, we ran 10 inde-
pendent retrainings on the first scenario encountered: the shape scenario.
For the DynaMoE network, only the gating network was retuned. To mea-
sure how quickly the networks could recover performance in the previously
learned rule, the networks were tuned until they reached a performance
criteria of average sorts to criterion <10 cards for the last 10 episodes of
a single asynchronous thread. The number of sorting episodes required to
achieve this performance were measured, as well as the distance traveled
in weight space during relearning/remembering the shape scenario (Fig. 5
and SI Appendix, Fig. S4). For additional methods on comparing network
remembering to initial learning, see SI Appendix, Supporting Information
Text.

Classic WCST Simulations with Untrained and Pretrained Networks. To simu-
late performance on the classic WCST in which the different sorting rule
episodes are interleaved randomly, five different networks were created.
The first network was a standard RNN with randomly initialized weights
(SI Appendix, Fig. S6A). The second network was a standard RNN that was
pretrained sequentially on, first, the shape rule, followed by the color rule,
followed by the number rule (SI Appendix, Fig. S6B). For each rule type,
the network was trained until “expert performance,” defined as average
sorts to criterion of less than four over the last 100 episodes of single asyn-
chronous thread before switching rules. The third network was a DynaMoE
network with three untrained expert networks with randomly initialized
weights (Fig. 1C and SI Appendix, Fig. S6C). The fourth network was a
DynaMoE network seeded with three pretrained expert networks—one pre-
trained on shape sorting, one on color sorting, and one on number sorting
(Fig. 1D and SI Appendix, Fig. S6D). Each of these pretrained experts had
been trained on the given rule until reaching “expert performance.” The
fifth network was a DynaMoE network that was pretrained sequentially
on first the shape rule, followed by the color rule, followed by the num-
ber rule (Fig. 1E and SI Appendix, Fig. S6E). The network started with
a gating network and a single expert network with randomly initialized
weights. The gating and expert networks were trained simultaneously on
the shape rule until “expert performance” was reached. The rule was
then switched to the color rule, and a new expert network with random
weights was added. The gating network was trained for a maximum of
250 sorting episodes, and then the new expert was brought online and

trained until “expert performance.” The same was then repeated for the
number rule.

Each network was then trained on the classic WCST, in which rules are
randomly interleaved (rules switch after every episode; see full description
in Behavioral Task). The center column of SI Appendix, Fig. S6 shows perfor-
mance of each network over 2,500 sorting episodes of training. Networks
with pretraining (SI Appendix, Fig. S6 B, D and E) were also trained for 2,500
sorting episodes on the shape rule (the first rule experienced), to compare
each network’s ability to “remember” a previously learned rule.

Lesion Studies. To perform the lesions studies, we first trained a DynaMoE
network identical to the network in SI Appendix, Fig. S6E as described
above. We then implemented one of the following lesions: L0, no lesion;
L1, ablation of the reward feedback input to the network; L2, ablation of
the action feedback input; L3, both L1 and L2 simultaneously; L4, ablation
of varying amounts of the synaptic connections of the “forget gate” com-
ponent of the LSTM, ranging from 10 to 100% and denoted by the subscript
(e.g., L40.9 has 90% of the synaptic connections ablated); L5,-ablation of
varying amounts of output from the RNN; L6, ablation of synaptic con-
nections to the units used to determine which expert network to use; L8,
ablation of the synaptic connects to the unit used to estimate value; and L7,
both L6 and L8 simultaneously. For two of the lesions types (L4, L7), we show
the full severity spectrum, as an example, in SI Appendix, Fig. S7.

After implementing the lesion, we then tested the full DynaMoE network
on the classic interleaved WCST. We ran 1,000 test episodes and then per-
formed analysis on performance as described in Results. For each lesion type,
we randomly ablated at each level of severity 10 times and analyzed aver-
age behavior, since lesions of specific connections or units within a given
region may have differential effects. Errors per episode in Fig. 6 was the
total number of errors in a sort rule episode. Perseveration proportion was
calculated as the proportion of increase in total error due to change in per-
severation errors. We defined perseveration errors as incorrect card sorts
immediately following the inevitable error trial after a rule change, which
would have been correct according to the previous rule (77). The inevitable
error trial refers to the first trial which receives feedback that a sort accord-
ing to the previously correct rule is now incorrect, signaling a rule change
has occurred. We note that there are more complex methods for scoring
perseverations on the WCST, largely due to the ambiguity introduced by
cards that can sort to multiple stacks (34, 49, 77, 78). Practically, we cate-
gorized an error as a perseveration if it immediately followed an inevitable
error trial, another perseveration error, or an unbroken streak of persever-
ation errors and correct sorts with ambiguity that included the previous
sort rule. Using the same criteria, we also tested the effects of the lesions
with the subset of cards excluding ambiguous cards, as in the Modified
Wisconsin Card Sorting Task (5, 55) and found qualitatively similar results
(SI Appendix, Fig. S8).

Additional Data Analysis. For additional data analysis methods, please see SI
Appendix, Supporting Information Text.

Data Availability. The code used to generate the data in this work is
available at https://github.com/tsudacode/DynaMoE.
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