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Studies of neural mechanisms of learning and memory 
have focused on large changes at identified synapses. 
However, memory in distributed processing reflexes could 
involve widely distributed engrams characterized by 
small changes at every synapse in the network. To in- 
vestigate this possibility, we used a neural network op- 
timization algorithm to construct distributed engrams for 
nonassociative conditioning in a model of the local bend- 
ing reflex of the medicinal leech (Hirudo medicinalis). The 
model comprised 4 sensory neurons, 10 to 40 interneurons, 
8 motor neurons, and up to 480 connections. Synaptic 
connections in the model were first optimized to reproduce 
the amplitude and time course of motor neuron synaptic 
potentials recorded during local bending. This network, 
which represented the naive state before conditioning, 
was then reoptimized to the habituated or sensitized state. 
Following reoptimization, the memory for nonassociative 
learning was encoded by small changes dispersed across 
the entire network, and each change made only a small 
contribution to the learning. Moreover, because the 
changes were small, resolution of a few tenths of a mil- 
livolt, or 3-5% of an average synaptic potential, would 
be needed to account for half of the nonassociative learn- 
ing. These results show how difficult distributed engrams 
can be to detect and provide a likely lower bound on the 
detectability ofnonassociative learning in this and related 
networks. © 1993 Academic Press, Inc. 

A major objective in the cellular analysis of learn- 
ing and memory is to identify the sites of synaptic 
plasticity underlying a conditioned change in be- 
havior, a task that  has been referred to as a search 
for the engram (Squire, 1987). Theoretically, the 
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engram may involve a variety of mechanisms in- 
cluding lasting changes in neuronal activity (Zipser, 
1991), the excitability or t ransfer  function of indi- 
vidual neurons (Servan-Schreiber, Printz, & Cohen), 
the t ime constants and other parameters  governing 
temporal response properties (Lisberger & 
Sejnowski, 1992), and the strength of synaptic con- 
nections (Hebb, 1949). To date, studies of the syn- 
aptic bases of learning and memory have typically 
focused on large changes at identified synapses 
(Brown, Chapman, Kairiss, & Keenan,  1988; Byrne, 
Baxter, Buonomano, Cleary, Eskin, Goldsmith, 
McClendon, Nazif, Noel, & Scholz, 1991). Compar- 
atively little is known about the different ways in 
which distributed processing networks can encode 
the memory for nonassociative learning (Frost, 
Clark, & Kandel, 1988). At one extreme, the engram 
could consist of a few large changes in synaptic 
strength; at the other extreme, it could involve 
small changes in every synapse. In ei ther case, de- 
tection of the engram may  be difficult because many 
synapses must  be tested before even a partial ac- 
count of the learning is achieved. 

The local bending reflex of the leech is an ad- 
vantageous model system in which to study how 
memories are encoded in distributed processing net- 
works. In response to a moderate dorsal, ventral,  or 
lateral  mechanical stimulus, the leech withdraws 
from the site of contact by contracting longitudinal 
muscles beneath the stimulus and relaxing those 
on the opposite side of the body (Kristan, 1982; 
Lockery & Kristan, 1990a). The nervous system of 
the leech consists of a chain of segmental  ganglia, 
each with circuitry sufficient for the reflex. Within 
the ganglion, major input to the reflex is provided 
by dorsal or ventral  pressure sensitive mechano- 
receptors, the P cells (Fig. 1A) (Nicholls & Baylor, 
1968; Kristan, 1982). The longitudinal muscles are 

0163-1047/93 $5.00 
Copyright © 1993 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 

208 



DETECTABILITY OF NONASSOCIATIVE LEARNING IN THE LEECH 209 

controlled by a total of eight types of motor neurons, 
an excitatory (DE or VE) and inhibitory (DI or VI) 
type for the dorsal and ventral quadrants on the 
left and right side of each body segment (Stuart, 
1970; Ort, Kristan, & Stent, 1974). The flow of in- 
formation from sensory neurons to motor neurons 
is mediated by a layer of interneurons, a subpopula- 
tiion of which has been identified: those that receive 
excitatory input from the dorsal P cells and in turn 
excite dorsal excitatory motor neurons (Lockery & 
Kristan, 1990a). A detailed physiological analysis 
of interneuronal connectivity (Lockery & Kristan, 
1990b) revealed that dorsal, ventral, or lateral stim- 
uli will activate almost every interneuron, and the 
activity of each motor neuron is the result of input 
from many different interneurons. Thus, the reflex 
appears to be produced by a distributed processing 
mechanism. Modeling studies support this view by 
providing working examples of how local bending 
motor patterns can be produced by interneurons 
having multiple P cell inputs and motor neurons 
that receive inputs from many different interneu- 
rons (Lockery, Wittenberg, Kristan, & Cottrell, 
1989; Lockery, Fang, & Sejnowski, 1990; Lockery 
& Sejnowski, 1992). 

Because the local bending reflex is believed to 
involve tens of interneurons and hundreds of con- 
nections (Lockery & Kristan, 1990b; Lockery & 
C I  • 

~ejnowskl, 1992), it is possible that the changes at 
individual synapses will be widely distributed and 
thus too small to detect in practical physiological 
experiments. Therefore, as a prelude to future phys- 
iological experiments, we made a theoretical inves- 
tigation of this possibility. Specifically, we asked 
whether widely distributed engrams could exist for 
the local bending reflex, and if so, what are the 
possibilities for detecting them? Because we wished 
to find engrams with the smallest changes possible, 
the answer provides a likely lower bound on the 
detectability of learning in the local bending reflex. 
Furthermore, because of functional and mechanistic 
]parallels between the local bending circuit and other 
systems, our results could also provide insights into 
~Lhe nature of widely distributed engrams in other 
systems. 

This paper focuses on memories for nonassociative 
learning~habituation and sensitization in partic- 
ular. Nonassociative learning differs from associa- 
tive learning in that statistical correlations between 
stimuli are not required. In habituation, perhaps 
the most elementary form of behavioral plasticity, 
repeated stimulation leads to a decrease in the am- 
plitude or probability of a response (Thompson & 
Spencer, 1966). In sensitization, the response to a 

test stimulus is increased by the delivery of a novel, 
strong, or noxious stimulus (Peeke & Petrinovich, 
1984). Groves and Thompson (1970) identify a sec- 
ond form of sensitization produced by repeated pres- 
entation of the test stimulus itself. This form of 
sensitization has been termed warm-up (Hinde, 
1970) to reflect the fact that it commonly reaches 
its maximum early in the series of repeated test 
stimuli. 

The local bending reflex exhibits habituation and 
both forms of sensitization. With repeated P cell 
stimulation, the amplitude of local bending con- 
tractions first increases and then decreases, in some 
cases to below its initial value (Lockery & Kristan, 
1991). The increase in response amplitude consti- 
tutes warm-up sensitization. The decrease in re- 
sponse amplitude following warm-up could be due 
to decay of sensitization, habituation, or both. That 
some preparations lack warm-up, yet exhibit the 
decline in response amplitude with repeated stim- 
ulation (Lockery & Kristan, 1991), supports the 
view that the decremental process is habituation. 
Thus, response amplitude in the local bending reflex 
is governed by simultaneously acting incremental 
and decremental processes and provides a clear ex- 
ample of the dual-process control of behavior first 
proposed by Groves and Thompson (1970). Sensiti- 
zation of the response to P cell stimulation can also 
be produced by activation of a separate nociceptive 
pathway that responds to electric shock, mechanical 
damage, and heat (Lockery & Kristan, 1991). 

The model of the local bending reflex employed 
in this paper was constructed using an optimization 
algorithm (Pearlmutter, 1989; Rumelhart, Hinton, 
& Williams, 1986) to adjust synaptic strengths until 
the model network reproduced the amplitude and 
time course of motor neuron synaptic potentials re- 
corded in response to dorsal, ventral, and lateral 
mechanosensory input in naive animals. The model 
in this state represented the naive network before 
nonassociative conditioning and is referred to as the 
naive network (Lockery & Sejnowski, 1992). In the 
model network produced by this method, the dis- 
tribution of synaptic potential amplitudes and the 
number of sensory inputs and motor outputs pos- 
sessed by individual interneurons closely matched 
the biological data. Thus, the model provides an 
accurate representation of the biological network. 

The same algorithm also provides a means of find- 
ing distributed engrams involving many small 
changes in synaptic strength. Because the optimi- 
zation algorithm we chose is based on gradient de- 
scent (Press, Flannery, Teukolsky, & Vetterling, 
1988), it makes small changes in every connection. 
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FIG. 1. (A) Network model of the local bending reflex. The network contained 4 sensory neurons (P cells), 40 interneurons, and 
8 longitudinal muscle motor neurons. Each neuron was represented as a single electrical compartment with an input resistance and 
membrane time constant. Synapse units (s-units) were inserted between pairs of neurons connected by chemical synapses. The time 
constant of s-units represented the delays in chemical synaptic transmission. Input from sensory neurons to interneurons was mediated 
by pairs of s-units with fast and slow time constants. The connections from interneurons to motor neurons (and between motor neurons) 
were mediated by single s-units with intermediate time constants. Connection strengths (w) from sensory neurons to interneurons and 
from interneurons to motor neurons were adjusted by an optimization procedure to reproduce the amplitude and time course of motor 
neuron synaptic potentials recorded in response to stimulation of sensory neurons. Motor neurons were also connected by numerous 
chemical and electrical (g) synapses whose strength was determined physiologically. Abbreviations used: PD, P cell with dorsal field; 
PV, P cell with ventral field; DE, excitor of dorsal muscle; VE, excitor of ventral muscle; DI, inhibitor of dorsal muscle; VI, inhibitor 
of ventral muscle. (B) Simulated synaptic potentials in four motor neurons in the model network in response to stimulation of the 
contralateral ventral P cell after synaptic connections had been optimized. Each panel shows the response of a single motor neuron, 
together with the target response from the data set. For comparison of model and target responses, the latter have been shifted upward 
by 1 inV. A similar match between model and target synaptic potentials was achieved for the ipsilateral motor neurons and for all 
other motor neurons in all other patterns. Reproduced, by permission of the publisher, from Lockery and Sejnowski (1992). 

This means it can find new sets of connection 
strengths in which the final connection strengths 
differ only slightly from the original ones. Taking 
advantage of this feature of the algorithm, we con- 
verted the naive network to the habituated state by 
reoptimizing its connections to reduce the amplitude 
of the motor neuron synaptic potentials. The sen- 
sitized state, representing the results of either form 
of sensitization, was produced analogously by reop- 
timizing the connections of the naive network to 
increase the motor neuron synaptic potentials. The 
changes in synaptic strengths following reoptimi- 
zation to habituated or sensitized levels constituted 
a theoretical engram for habituation or sensitiza- 
tion. Analysis of the habituated and sensitized 
states identified salient features of the distributed 
engram and showed that  such engrams can be dif- 
ficult to detect. This provides a likely lower bound 
on the detectability of nonassociative learning in 
this and related networks. 

METHODS 

Specification of the Model 

Construction of the model has been described in 
detail previously (Lockery & Sejnowski, 1992); the 
main points are repeated here. 

Circuit. The model comprised 4 sensory neurons 
(P cells), 20 pairs of lef t -r ight  symmetrical inter- 
neurons, and 8 motor neurons (Fig. 1A). The number 
of interneurons represented, in round numbers, an 
upper estimate of the total number of local bending 
interneurons in a single midbody ganglion. A pre- 
vious study (Lockery & Kristan, 1990b) identified 
8 paired and 1 unpaired interneuron contributing 
to dorsal local bends. In the model networks, the 
unpaired neuron, which is symmetrical about the 
midline, can be represented as an additional left-  
right pair, bringing the total to 9. We assumed that  
a search for ventral bending interneurons might 
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yield another 9 pairs, thus 18 pairs in total. Thus, 
t]he number was rounded to 20 for convenience. In 
several simulations, however, the number of inter- 
neurons was reduced to test specific hypotheses. 
Each of the 8 motor neurons in the model repre- 
sented 1 of 8 types of longitudinal muscle motor 
neurons, there being 2-4  neurons per type (Ort et 
all., 1974; Stuart, 1970). These comprise the excitors 
and inhibitors of dorsal longitudinal muscle, DE and 
DI, respectively, and the excitors and inhibitors of 
ventral longitudinal muscle, VE and VI, 
respectively. 

All known chemical and electrical synaptic con- 
nections between motor neurons were included and 
connection strengths (weights) were determined 
t~om previous physiological recordings ~ (Granzow, 
l?riesen, & Kristan, 1985). Weights of feedforward 
connections from sensory neurons to interneurons 
and from interneurons to motor neurons were ad- 
justed using an iterative optimization procedure 
(Pearlmutter, 1989) so that  the model reproduced 
the amplitude and time course of motor neuron syn- 
aptic potentials recorded in response to single and 
paired P cell stimulation in eight different patterns 
(Lockery & Kristan, 1990a). The optimization pro- 
cedure was not allowed to insert connections be- 
tween interneurons, since functional connections of 
l~his type have not been found; nor was the optim- 
JLzation procedure allowed to insert feedback con- 
nections from motor neurons to interneurons, since 
only one such connection has been identified to date 
(Friesen, 1989). 

Neurons. Neurons were modeled as passive, sin- 
gle electrical compartments having in parallel an 
input resistance and capacitance to ground. Trains 
of action potentials in sensory neurons were mod- 
eled as stepwise increases in presynaptic voltage. 
Action potentials within trains were not represented 
individually, since the model is concerned with the 
rise, fall, and amplitude of the motor neuron syn- 
aptic potentials in response to trains of sensory cell 
impulses, not in the response to individual action 
potentials. 

Synapses. Electrical synapses were modeled as 
ohmic conductances. The synapse between inhibi- 
tory and excitatory motor neurons was used as a 
model for all chemical synapses in the network, 
since this connection is the most thoroughly studied. 
Within the ganglion, chemical synaptic transmis- 
sion between inhibitory and excitatory motor neu- 
rons (Granzow et al., 1985), as well as from inter- 
neurons to motor neurons and other interneurons 
in the leech (Angstadt & Calabrese, 1991; Friesen, 

1985; Granzow et al., 1985), is a graded function of 
presynaptic voltage; it does not require action po- 
tentials, nor is it substantially affected by them. 

In physiological experiments (Granzow et al., 
1985) a stepwise increase in presynaptic voltage in 
DI produced a slowly rising postsynaptic potential 
in DE (Lockery & Sejnowski, 1992; their Fig. 2A). 
To account for the long synaptic rise time, synapse 
units (s-units, Fig. 1A) were inserted between pairs 
of neurons connected by chemical synapses. The ac- 
tivation level of an s-unit, representing percentage 
maximum activation of the synapse, varied between 
zero and one. Steady-state s-unit activation was a 
sigmoidal (S-shaped) function of presynaptic volt- 
age. The shape of this function was determined us- 
ing data from a previous study (Granzow et al., 
1985). For each s-unit, a single time constant de- 
termined the rate at which steady state was ap- 
proached. The range of this parameter was con- 
strained by previous physiological recordings from 
pairs of motor neurons (Granzow et al., 1985). Thus, 
the s-units represented the temporal dynamics of 
all the steps in t ransmit ter  release and production 
of postsynaptic current. 

Single s-units were inserted between interneu- 
rons and motor neurons, and between pairs of motor 
neurons. Preliminary simulations showed that  the 
time course of motor neuron synaptic potentials, 
which exhibit a fast and slow exponential decay, 
could not be produced by a local bending model hav- 
ing only one s-unit with a single time constant at 
each connection. Therefore, two s-units, one with a 
fast and one with a slow time constant, were in- 
serted between each sensory neuron and interneu- 
ron. This was consistent with intracellular record- 
ings of synaptic potentials from interneurons in 
response to P cell stimulation, which showed fast, 
slow, and mixed fast and slow synaptic potentials 
(Lockery & Kristan, 1990b). Only single s-units 
were inserted between interneurons and motor neu- 
rons because multiple components in synaptic trans- 
mission at this synapse have not been observed 
(Lockery & Kristan, unpublished data). 

Fixed Parameters 

Neuronal input resistances and time constants 
were set to values consistent with physiological re- 
cordings from neuron somata, s-unit t ime constants 
were determined from previous pairwise recordings 
between pairs of neurons connected by chemical 
synapses (Granzow et al., 1985) or were fit by hand 
to reproduce the time course of motor neuron syn- 
aptic potentials in response to P cell stimulation 
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(Lockery & Sejnowski, 1992). Pairwise recordings 
from motor neurons (Granzow et al., 1985) were 
used to estimate the strength of the coupling con- 
ductance between electrically coupled motor neu- 
rons, and the strength of chemical synapses between 
motor neurons. 

Optimization of the Naive Model 

Many techniques are available for optimizing 
weights and other parameters in neural network 
models (Hinton, 1987). The simplest is numerical 
differentiation, in which a parameter is incremented 
by a small amount and the performance of the net- 
work is evaluated. If the performance of the network 
improves, the change is kept; if performance de- 
grades, the parameter is decreased (Robinson & Ar- 
nold, 1990). Backpropagation (Rumelhart et al., 
1986) relies on the same principle, but  evaluates all 
parameters simultaneously. Backpropagation is 
thus simply a means of finding an optimum set of 
parameters, much like conventional curve fitting 
techniques. The objective of the optimization pro- 
cedure was to choose a set of connection strengths 
to and from the interneurons such that  the time 
course and amplitude of motor neuron synaptic po- 
tentials in the model matched those in physiological 
recordings from naive animals. To construct the set 
of input -output  relations, or data set, for the op- 
timization procedure, the amplitude of a represent- 
ative motor neuron synaptic potential was digitized 
for use as a template. This template was scaled to 
the average peak amplitude for each motor neuron 
in response to each of eight patterns of single and 
paired P cell stimulation (Lockery & Kristan, 1990a; 
their Figs. 4 and 5). The eight patterns used were 
(1) left dorsal P cell, (2) left ventral P cell, (3) right 
ventral P cell, (4) right dorsal P cell, (5) both dorsal 
P cells, (6) both ventral P cells, (7) left dorsal and 
ventral P cells, and (8) right dorsal and ventral P 
cells. Patterns 7 and 8 are referred to as lateral 
stimulation. Initially, connections from sensory 
neurons to interneurons and interneurons to motor 
neurons were small and randomly assigned. In ac- 
cordance with the recurrent backpropagation al- 
gorithm (Pearlmutter, 1989), connections in the net- 
work were optimized to reduce the total error (E) 
defined as 

E =  ~p ~k f :  0.5[V,k(t) -- V,k(t)] 2 dt, 

where p ranges over the input patterns in the data 
set, k ranges over the motor neurons in the model, 
and T is the duration (1 s) of the voltage trajectories 

in the simulation. The quantity V(t) is the desired 
voltage obtained by scaling the template for each 
motor neuron and each pattern of sensory input. 

Connection strengths from sensory neurons to in- 
terneurons were constrained to be positive, since no 
inhibitory connections have been observed between 
such pairs. In addition, they were constrained to be 
greater than 1.35 mV (in response to the standard 
P cell voltage step described below) to ensure that  
sensory input was widely distributed across all the 
interneurons. Because most neurons in the leech 
occur in lef t - r ight  pairs, each model interneuron 
on the left was constrained to be the mirror image 
of a homologue on the right. After optimization, the 
model interneurons matched their biological coun- 
terparts in the number of P cell inputs they received, 
and the number of motor neurons to which they 
projected. Thus, the degree to which the model and 
biological networks process information in a dis- 
tributed fashion was the same. 

Reoptimization of the Naive Model to the 
Habituated or Sensitized State 

Distributed engrams for habituation and sensi- 
tization were found by reoptimizing the model to 
modified data sets. Extracellular recordings of P- 
cell-elicited action potentials in motor neurons re- 
vealed that  firing frequency decreases during ha- 
bituation training and increases during sensitiza- 
tion training (Lockery & Kristan, 1991). This 
strongly suggests that  the underlying synaptic po- 
tentials in the motor neurons change in the same 
way. However, intracellular recordings of the actual 
change in the amplitude of each motor neuron syn- 
aptic potential in response to each pattern of P cell 
stimulation are not yet available. Instead, we reop- 
timized the model to produce synaptic potentials. 
that  were decreased in amplitude by 50% for ha- 
bituation, and increased by 50% for sensitization 
(Fig. 2). 

It is possible that  future physiological experi- 
ments will show that  each synaptic potential is not 
changed by the same percentage in habituation or 
sensitization. Perhaps the percentage of change is 
different for different motor neurons and different 
patterns of P cell stimulation. In light of this pos- 
sibility, the value of 50% can be taken to represent 
the average change in motor neuron synaptic po- 
tential. The value of 50% was chosen because it is 
consistent with the change in amplitude of muscle- 
tension transients during habituation and sensiti- 
zation in a semi-intact local bending preparation 
(Lockery & Kristan, 1991). Because there is a linear 
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FIG. 2. Reoptimization of motor neuron synaptic potentials. 

(A and B) Simulated synaptic potentials in four motor neurons 
in the model network in response to stimulation of the two dorsal 
]? cells are shown before (solid line) and after (dotted line) reop- 
timization to the habituation (A) or sensitization (B) data set. 
The bars show the duration of the P cell stimulus. Similar results 
'were obtained for all eight motor neurons in all eight patterns 
of P cell stimulation. (C) Intracellular recordings from a dorsal 
exciter motor neuron before and after habituation training. The 
]peak response was reduced after training, but the time course 
'was unaffected. The spikes in the records are action potentials 
conducted electronically from the cell's distal spike initiating 
zone. Action potentials were omitted from the model because 
synaptic transmission from interneurons and motor neurons is 
a graded function of presynaptic voltage and is not affected by 
the presence or absence of action potentials. 

relationship between motor neuron firing rate and 
peak tension in the same preparation (Mason & 
Kristan, 1982), it is reasonable to suppose that the 
underlying synaptic potentials are also changed by 
a similar percentage. 

We further assumed that the time course of syn- 
aptic potentials was not affected by training. For 
habituation, this assumption is based on prelimi- 
nary recordings from motor neurons before and after 

habituation training (Fig. 2C). Equivalent data for 
sensitization are not yet available. However, pre- 
liminary studies show that the time course of in- 
stantaneous firing frequency in the motor neurons 
is similar before and after sensitization (Lockery & 
Kristan, unpublished data). 

In this study we focused on engrams involving 
changes distributed widely among sensory neuron 
to interneuron and interneuron to motor neuron 
synapses. Because we were interested in a special 
class of engram in which the changes in synaptic 
strength are small, we used backpropagation again, 
this time for the reoptimization process. The choice 
of backpropagation was appropriate because it is a 
form of gradient descent which makes small changes 
in each connection at every iteration and thus favors 
an engram involving minimal changes in the 
weights. Although it is a powerful algorithm, back- 
propagation is not guaranteed to find a solution to 
every data set. It was therefore of interest to de- 
termine whether it could solve the reoptimization 
task. Reoptimization was allowed to proceed until 
the average deviation from the habituated or sen- 
sitized data set for each motor neuron at each time 
point was 5% or less. No constraints were placed on 
the amount each synapse could change, and a syn- 
apse could increase or decrease in strength. The 
absence of such contraints reflects the fact that the 
range of changes in the actual network is as yet 
unknown. Indeed, one of the main goals of this study 
was to evaluate the possibility that there are en- 
grams in which the change might be too small to 
detect. 

Procedural Note 

The optimization procedure was used as a means 
of rapidly finding new patterns of connectivity 
within the local bending network, not as a model 
for the cellular events whereby synaptic strength is 
altered by learning in the biological system. Thus, 
this study emphasizes the end point of the reoptimi- 
zation process, not its intermediate stages. 

Changes in Synaptic Strength 

To make possible the comparison of the size of 
changes in synaptic strength in the model with 
those in the biological network, care was taken 
when optimizing the naive network to ensure that 
the naive model and biological network had similar 
distributions of synaptic strength. Preliminary sire- 
ulations showed that the correspondence between 
model and actual histograms of strengths of con- 
nections from P cells depended on the amplitude of 
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FIG. 3. Histograms ofsynaptic potential amplitudes in interneurons (A) and motor neurons (B) in response to a standard presynaptic 
stimulus (see Methods). Physiological histograms are shown on the left (data); histograms from a single model network are shown on 
the right (model). The physiological data are from Lockery and Kristan (1990a). The histograms showed that interneurons in the 
model functioned in the same operating range as in the biological network. Reproduced, by permission of the publisher, from Lockery 
and Sejnowski (1992). 

the voltage step representing the P cell stimuli 
which served as input to the network. Step ampli- 
tude is a scale factor that  was necessary to com- 
pensate for the absence of action potentials in the 
model. The amplitude of the P cell step therefore 
has no biological significance. Optimizing naive net- 
works with different step amplitudes showed that  
a step of 10 mV produced the best matching his- 
togram (Fig. 3A). After optimization of each naive 
network, we examined the distribution of interneu- 
ron to motor neuron connection strengths using 
various presynaptic voltage steps. The best  corre- 
spondence for histograms of connection strengths to 
motor neurons (Fig. 3B) was achieved when model 
interneurons were depolarized with voltage steps of 
100 mV. This level of depolarization agrees well 
with the depolarization produced by the current  
pulses used in Lockery and Kris tan (1990b) to mea- 
sure the actual connection strengths. Using the 
same voltage steps, we measured synaptic strengths 
in the reoptimized networks. Change in synaptic 
strength was measured by taking the difference be- 
tween the synaptic s trength measured before and 

after optimization to the habi tuated or sensitized 
data  set. 

Replications 

To ensure reliability of the results, six different 
naive networks were constructed by optimizing from 
six different sets of random initial connection 
strengths (Lockery & Sejnowski, 1992). Each of 
these networks was reoptimized for habituat ion and 
sensitization and the results averaged. Averages are 
presented as means _+ standard error of the mean. 

RESULTS 

Distribution of Changes in Synaptic Strength 

Reoptimizing the local bending network model to 
the habi tuated or sensitized data  set produced 
widely distributed engrams in which almost all of 
the connections in the network were altered (Fig. 
4). The figure shows the absolute value of changes 
in synaptic s trength (lafter reoptimization - before 
reoptimization I) for half  the interneurons after reop- 
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FIG. 4. The distributed engram for habituation. Each gray domino shows the absolute value of the changes in connection strength 
(squares) for the four input connections and eight output connections of a model interneuron. The area of each square is proportional 
to the absolute value of the change in synaptic strength in millivolts (see scale) at the indicated connection. Only the 20 interaeurons 
on the left side of the network are shown (1L-20L); each of the 20 interneurons on the right side (1R-20R) exhibited mirror image 
changes to those of its homologue on the left. Similar results were obtained for sensitization. Presynaptic and postsynaptic neurons 
are indicated in the key, with abbreviations as described in the legend for Fig. 1A. 

timizing to the habituated state of one of the six 
networks; changes in the connections of the other 
interneurons, which are the lef t - r ight  homologues 
of those depicted in the figure, were the mirror im- 
age of those shown. Changes in synaptic strength 
produced by reoptimizing to the sensitized state 
were opposite in sign to the ones produced by reop- 
timizing to the habituated state. Histograms of the 
absolute value of the changes for input and output 
connections showed that  the distributions were 
skewed toward small changes in synaptic strength 
(Fig. 5). Across all habituated networks, the average 
daange in synaptic strength was 0.22 -+ 0.0048 mV 
(or 13.2 _+ 0.979%); for sensitized networks it was 
0.20 _+ 0.0031 mV or (12.2 _+ 0.710%). Thus, reop- 
timization produced engrams involving numerous 
small changes rather than a few large ones. 

In an intuitively simple hypothesis of nonasso- 
ciative learning, habituation would be the result of 
decreases in synaptic strength and sensitization 
would be the result of increases in synaptic strength. 
Whether the distributed engrams found by reopti- 
mization followed this rule was determined graph- 
ically by making scatter plots of the change in syn- 
aptic strength (after reoptimization - before 
reoptimization) against the synaptic strength before 
optimization (Fig. 6). As the arrows show, EPSPs 
that  increased in strength fall in the upper right 
quadrant while EPSPs that  decreased in strength 
fall in the lower right quadrant. For IPSPs the lo- 
cations are reversed, with increased strengths in the 

lower left quadrant  and decreased strengths in the 
upper left quadrant. 

Inspection of the scatter plots revealed several 
trends that  were consistent with the simple hy- 
pothesis of habituation and sensitization. First, the 
strong input connections tended to decrease in ha- 
bituation and increase in sensitization. Thus, most 
of the strong input connections changed in a way 
that  was consistent with the change in motor out- 
put. Second, most of the output connections de- 
creased in synaptic strength in habituation and in- 
creased in sensitization. Nevertheless, counter- 
intuitive changes also occurred in both input and 
output connections; habituation included many in- 
creases in the synaptic strength, and sensitization 
included many decreases in synaptic strength. Thus, 
in the distributed engrams found by reoptimization, 
habituation and sensitization were produced by the 
combined effect of intuitive and counterintuitive 
changes in synaptic strength. 

Effects of Changes in Synaptic Strength at Single 
Synapses 

Although every connection in the model changed, 
it was possible that  some changes accounted for 
more of the learning than others. The effectiveness 
of each connection change was evaluated by deter- 
mining how close the change at that  connection 
came to producing the reoptimized motor output. A 
64-dimensional coordinate system was defined in 
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FIG. 5. Histograms of the absolute value of the changes in synaptic strength produced by reoptimization (same network as Fig. 
4). The top two panels show histograms for connections from sensory neurons to interneurons; the bottom two panels show histograms 
for the connections from interneurons to motor neurons. Counts of the number of changes in each 0.05 mV bin from 0.0 to 1.0 mV 
are expressed as a percentage of the total number of connections of that type. The distributions were skewed toward small changes 
in synaptic strength. 

which each axis represented the peak amplitude of 
the motor neuron synaptic potential for 1 of the 8 
motor neurons in 1 of the 8 patterns of P cell stim- 
ulation. Naive and reoptimized networks were lo- 
cated at points in this space defined by their syn- 
aptic potential amplitudes. In this coordinate 
system, the change in motor output produced by 
learning is the vector extending from the point oc- 
cupied by the naive network to the point occupied 
by the reoptimized network. The contribution of the 
change at any one connection to the overall change 
in motor output is the vector extending from the 
naive network to an otherwise naive network into 
which that change has been inserted. 

To illustrate, we assume that there is one stim- 
ulus pattern and two motor neurons whose output 
is reduced by 50% in the habituated state (Fig. 7A). 
In this space, the vector w represents the change 
in motor output in the habituated state. The vector 
v represents the change in motor output attribut- 
able to the change in a single sensory to interneu- 
ron, or interneuron to motor neuron connection. To 
determine v, the connection of interest was inserted 
into the otherwise naive network. Each of the eight 
stimulus patterns was then presented and the peaks 
of the motor neuron synaptic potentials were de- 

termined for each motor neuron and each pattern. 
The head of v lies at the point in the coordinate 
system defined by the peak motor neuron synaptic 
potentials observed with the change inserted. The 
effectiveness of the change in a given connection is 
measured by the relationship between w and v. In 
the example, the connection of interest is respon- 
sible for some of the change in motor output; con- 
sequently, v points in the direction of w, but does 
not overlie it. A connection whose change was det- 
rimental to the change in output would point away 
from w. The effectiveness of each connection was 
quantified by finding p, the projection of v onto w. 
Thus, positive values ofp indicate changes that are 
consistent with the change in motor output produced 
by learning; negative values of p indicate changes 
that are detrimental to the change in motor output. 
To allow comparison of different networks, p was 
normalized to the magnitude of w (llwil)- The nor- 
malized projection gives the fraction of learning ac- 
counted for by the associated change in synaptic 
strength. 

In habituation of the six networks, the fraction 
of learning attributable to individual connections 
ranged from - 0.007 to 0.081 with a mean of 0.0022 
_+ 0.00012. For sensitization, the range was - 0.005 
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FIG. 6. Scatter plots of the changes in synaptic strength of input and output connections of the interneurons shown in Fig. 4. In 
each panel, the strength of a connection before reoptimization is plotted on the abscissa. The ordinate gives the change in that 
connection (after reoptimization - before reoptimization). Thus, connections whose strength increased (upward arrows) fall in the 
upper right and lower left quadrants, while connections whose strength decreased (downward arrows) fall in the lower right and upper 
]eft. Input connections were constrained to be positive in the model; hence, there are no points on the left in these two panels. 
Implementation of this constraint (Lockery & Sejnowski, 1992) caused several connections to have nearly the same value on the 
abscissa, resulting in small, vertically oriented clusters. These plots show that both habituation and sensitization were produced by 
the combined effect of increases and decreases in synaptic strength. 

to 0.073 with a mean of 0.0020 + 0.00010. Thus, 
no single change accounted for more than 8.1% of 
the change in motor output and the mean was about 
0.2%. That the range of normalized projections in- 
cludes negative values shows that some changes 
were detrimental to the change in motor output. 
However, plotting the distribution of projections for 
the habituated and sensitized states of individual 
:networks (Fig. 7B) showed that the distributions 
were strongly biased toward small, positive values. 
'This result indicates that despite the presence of 
counterintuitive changes in the connections, almost 
every change contributed positively to the change 
in motor output. 

Detecting a Widely Distributed Engram 

Two aspects of the distributed engram complicate 
the physiological analysis of learning. First, the 
large number of changes such an engram entails 
could require testing many or all of the connections 
to give a complete account of learning; we refer to 
this as the sampling problem. Second, the individual 
changes are small and could therefore be hard to 

detect; we refer to this as the detection problem. 
The sampling and detection problems were treated 
separately in the analysis of the reoptimization 
engrams. 

The sampling problem was investigated by as- 
suming the worst case in which the experimenter 
has no prior knowledge of which connections are 
most likely to change, and thus must choose ran- 
domly among the 480 connections in the network. 
Under this assumption, we asked how many con- 
nection strength changes would have to be tested 
to account for half of the habituation or sensitiza- 
tion. The fraction of learning accounted for by a set 
of changes in connection strength was defined in 
terms of the method described above for the fraction 
of learning accounted for by a single change; the 
vector v, representing the effect of all the detectable 
connection changes, was projected onto the vector 
w representing the total change in output, and the 
projection p was calculated and normalized as be- 
fore. To account for half of the learning, a set of 
changes in connection strength must have an as- 
sociated normalized projection of 0.5. 

The analysis was carried out by inserting the con- 
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nection strength change at a randomly chosen con- 
nection from a habituated or sensitized network into 
the same network in its naive state, and the fraction 
of the learning that connection accounted for was 
calculated. Leaving this change in the network, a 
second connection strength change was chosen and 
the fraction of learning accounted for by the two 
changes together was calculated. This continued un- 

til all 480 connections had been chosen. The entire 
process was repeated 20 times on each of the 6 model 
networks reoptimized for habituation and sensi- 
tization. 

Plotting the fraction of learning against the num- 
ber of changes that had been inserted into the naive 
network showed that there was, on average, a linear 
relationship between the number of connections in- 
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FIG. 8. The relation between the number of connections 
tested and the amount of learning accounted for by the tested 
connections in the network shown in Fig. 4. Beginning at the 
origin, a connection strength change was chosen at random from 
the habituated (above) or sensitized network (below) and was 
inserted into the same network in its otherwise naive state. The 
fraction of learning accounted for by this change was determined 
as in Fig. 7 and another randomly chosen change was inserted. 
This process was repeated until all changes had been selected, 
p][otting after each insertion the fraction of learning accounted 
for by the accumulated changes against the number of changed 
connections. This process was repeated 20 times, each repetition 
p:roducing a unique curve. For clarity, curves are shown only for 
the repetitions having the smallest, largest, and the average 
number of insertions to the point at which half of the learning 
is accounted for. On average, in this and the other five networks, 
accounting for half of the learning required sampling half of the 
connections, but random differences in sampling order produced 
large variations in the number of connections that had to be 
sampled to reach this point. 

serted into the naive network and the fraction of 
learning they accounted for (Fig. 8). This would be 
expected if there is a linear interaction of changes 
a£ individual connections, a point that was con- 
firmed by determining whether the sum of all in- 
dividual projections is equal to ]]wl]. In the six model 
networks studied, the average percentage difference 
between the sum or projections and IIwH was 7.7 ___ 
0.4%; for sensitization it was -4 .2  -+ 0.4%. This 
indicates that the changes in the distributed engram 
interact approximately linearly. Thus, on the av- 
erage, to account for half the learning, it would be 

necessary to measure the change at approximately 
half of the connections in the network. However, 
because of differences in the fraction of learning 
produced by the change at each connection (Fig. 7B) 
and the random order in which they were inserted 
into the naive network, each of the 20 repetitions 
followed a unique path from 0 to i on the ordinate. 
Thus, the number of changes required to account 
for half of the learning varied widely across the 20 
repetitions and 6 networks. For habituation, this 
number ranged from 141 to 332; for sensitization, 
the range was 180 to 319. Thus, in the distributed 
engrams, the order in which connections are sam- 
pled can have a significant effect on the number 
required to account for half of the learning; in some 
cases more than two-thirds of the connections in the 
network must be tested. 

The sampling problem might be reduced if the 
sites of the most effective changes could be antici- 
pated before learning. For example, an experimen- 
ter with prior knowledge of the connection strengths 
in the naive network might suppose that the most 
effective changes would be those of the strongest 
connections before conditioning. However, in the 
distributed engrams produced by reoptimization, 
there was little or no correlation between the pre- 
learning amplitude of a connection and the fraction 
of learning accounted for by that connection. For 
the six habituated networks, the average coefficient 
of determination (r 2) for input connections was 
0.0058 -+ 0.034; for output connections it was 0.0050 
-+ 0.0028. For the six sensitized networks the av- 
erage r 2 was 0.0050 -+ 0.0028; for output connec- 
tions it was 0.0055 -+ 0.0029. Thus, the initial 
strength of a connection does not necessarily provide 
a significant clue as to which connections are most 
profitable to test. 

The detection problem was investigated by asking 
how sensitive the physiological test for changes in 
synaptic strength would have to be to detect half 
the learning. Specifically, we supposed the experi- 
menter could find every change greater than or 
equal to an assumed minimum detectable change, 
and asked what minimum would yield a set of 
changes which together account for half of the 
change in motor output. 

The analysis was accomplished by setting the as- 
sumed minimum detectable change to successively 
lower values, beginning with the largest change in 
connection strength found in the network under con- 
sideration. Thus, the largest connection change in 
the habituated or sensitized network was inserted 
into the same network in its otherwise naive state, 
and the fraction of learning accounted for by that 
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FIG. 9. Detectability of habituation and sensitization for the network shown in Fig. 4. (A and B) Graphical determination of the 
minimum detectable change required to account for half of habituation and sensitization. Beginning on the right, the largest connection 
strength change was inserted into the otherwise naive network. The fraction of learning accounted for by this change was determined 
as in Fig. 7 and the second biggest change was inserted. This process was repeated until all changes had been inserted, plotting after 
each insertion the fraction of learning accounted for by the accumulated changes against the absolute value of the last change inserted. 
For the examples shown, accounting for half of the learning required detection of changes as small as 0.17 mV for habituation and 
0.12 mV for sensitization (arrows). (C) The effect of the number of interneurons in the model network on the minimum detectable 
change required to account for habituation (solid squares) and sensitization (open squares). There was an inverse relation between 
the required level of detection and the number of interneurons. 

change was determined by calculating the projection 
p. Leaving this change in the network, the assumed 
minimum detectable change was set to the next to 
largest change in connection strength; this change 
was then inserted and p was recalculated. This pro- 
cess was repeated until all changes were inserted. 

Plotting the fraction of learning against the min- 
imum detectable change (Figs. 9A and 9B) provided 
a graphical means of determining how much of the 
learning could be accounted for at a given level of 
detectability. Each curve begins at the right with 
the insertion of the largest change. For complete- 
ness, the analysis continued past the point at which 
half of the learning was accounted for to the point 
at which all of the learning was accounted for. Fig- 
ure 9A shows that accounting for half of habituation 
in the network shown in Fig. 4 required detection 
of all the changes down to a minimum detectable 
change of 0.17 mV; accounting for half of sensiti- 

zation required detection of all the changes down 
to 0.12 mV (Fig. 9B). Similar results were found for 
all six networks. For habituation, the average min- 
imum detectable change required to detect half of 
the learning was 0.183 -+ 0.007 mV; for sensitiza- 
tion it was 0.129 _+ 0.010 mV. The values are small 
with respect to the average synaptic potentials in 
the model in response to standard presynaptic stim- 
uli (see Methods) which were 3.9 mV for the con- 
nections from sensory neurons to interneurons and 
4.0 mV for connections from interneurons to motor 
neurons. Thus, accounting for half the learning in 
the model requires the ability to detect changes on 
the order of 3-5% of the amplitude of the average 
synaptic potential. 

We expected that smaller networks, which have 
fewer connections, would on average require larger 
changes at each connection to produce the same 
amount of habituation or sensitization, leading to 
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a higher minimum detectable change required to 
account for half of the learning. The assumption of 
40 interneurons in the model was based on an upper 
estimate of the actual number of local bending in- 
terneurons. However, it is conceivable that the bi- 
ological network contains a smaller number of in- 
terneurons, with a lower limit of about 10 pairs, 
based on the prior identification of 8 pairs and 1 
unpaired interneuron per ganglion (Lockery & Kris- 
tan, 1990b). We therefore wished to determine how 
quickly the minimum detectable change rises as the 
number of interneurons is reduced. 

The dependence of the minimum detectable 
change on the number of interneurons in the model 
was tested by optimizing networks (n = 6) with 
fewer than 40 interneurons to produce normal local 
bending motor output. Each of these networks was 
then reoptimized to the habituated and sensitized 
states, and the average minimum detectable change 
required to account for half of the learning was 
evaluated as above. For the 20-interneuron net- 
works, the average minimum detectable change for 
habituation increased to 0.238 _+ 0.023 mV and for 
sensitization to 0.144 _ 0.006 mV (Fig. 9C). For 
the 10-interneuron networks, the average minimum 
detectable change for habituation increased to 0.446 
-~: 0.050 mV and for sensitization to 0.287 - 0.068 
inV. Thus, the ability to detect small changes in 
s~maptic strength is required to account for half of 
the learning even when the number of interneurons 
is reduced well beyond its lower limit. 

DISCUSSION 

Optimization in Models of Learning 

In a distributed processing network like the local 
bending reflex, memories might be encoded in dis- 
tributed engrams involving small changes at every 
synapse in the network. If so, an experimental 
search for such an engram might be a difficult un- 
dertaking. As an aid to interpretation of future elec- 
trophysiological studies of learning and memory in 
this system, we asked whether such engrams are 
possible in this network. 

We began with the reasonable assumption that 
nonassociative conditioning will produce, on aver- 
age, a 50% change in the amplitude of the synaptic 
potentials of the motor neurons controlling the be- 
havior. We then used a computer algorithm based 
on gradient descent to search for a set of minimal 
changes in synaptic strength sufficient to produce 
the desired change in motor output. This approach 

was valid for our purpose, which was to explore the 
worst case in which all the changes were as small 
as possible, because we were not trying to find the 
actual engram. Had we been interested in predicting 
the actual engram, a better approach would have 
been to model the actual mechanisms of synaptic 
plasticity operating at the level of individual syn- 
apses. Such an effort is premature in this system, 
however, because the actual mechanisms of plas- 
ticity are not known. 

The optimization algorithm is not intended here 
as a model for the cellular or network level mech- 
anisms of synaptic plasticity. The interest is strictly 
in possible engrams reached at the endpoint of op- 
timization. Therefore, the question of the biological 
plausibility of optimization algorithms is as irrel- 
evant as it is in the case of curve fitting techniques 
such as linear regression, which are widely used in 
biology and the behavioral sciences. It is worth em- 
phasizing this because the historical tendency to 
speak of backpropagation in terms of learning al- 
gorithms and training has led some to discount the 
models that happen to use backpropagation (rather 
than data or trial and error) to select connection 
strengths or the changes in them. The alternative, 
to adjust all of the connection strengths by trial and 
error, is simply not feasible. 

The Detectability of Nonassociative Learning in the 
Leech 

Our results set a likely lower bound on the de- 
tectability of nonassociative learning in the local 
bending reflex. Gradient descent favors small 
changes in connection strength; thus, the engrams 
provide a lower bound on the detectability of learn- 
ing. However, we cannot rigorously exclude the pos- 
sibility of engrams involving even smaller changes. 
This is because gradient descent algorithms do not 
necessarily converge to the globally optimal solu- 
tion. Nevertheless, if the actual engram were sim- 
ilar to the one found by the algorithm, resolution 
at the level of a few tenths of a millivolt would be 
required to account for only half of the learning. 
The limit of resolution that can be achieved in phys- 
iological experiments depends on such quantities as 
the signal-to-noise ratio of the intracellular record- 
ings, the natural variance of synaptic potential am- 
plitudes, and the number of test trials that can be 
obtained on an individual connection before and 
after learning. Quantal analysis of the synapse be- 
tween an inhibitory interneuron and a heart motor 
neuron in the leech (Nicholls & Wallace, 1978) re- 
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solved differences as small as 0.25 mV. If differences 
of this size can be detected in synapses in the local 
bending reflex, then it would be possible to account 
for approximately 40% of learning encoded by the 
minimal engrams presented here (Figs. 9A and 9B), 
provided that  all the connections in the biological 
network can be tested. 

Properties of the Minimal Engram 

The model further demonstrates that  an engram 
may involve many counterintuitive changes in syn- 
aptic strength. In a simple hypothesis of nonasso- 
ciative learning, habituation is the result of de- 
creases in synaptic strength and sensitization is the 
result of increases in synaptic strength. For ex- 
ample, in a linear network, a 50% habituation of 
the response of all motor neurons to all patterns of 
sensory input could be produced by decreasing the 
strength of the input and output connections of all 
interneurons by half; a 50% sensitization could be 
produced by a 50% increase in these connections. 

The changes in connection strength produced by 
the reoptimization algorithm, however, differed 
from this simple model in several respects. First, 
the changes were most of smaller than 50% (Fig. 
6). Second, a substantial number of synaptic 
strengths increased in habituation and decreased in 
sensitization. It is conceivable that  these counter- 
intuitive changes would be detrimental. In contrast, 
however, most of the counterintuitive changes in 
fact contributed positively to the change in output, 
since a much larger proportion of the changes oc- 
cupied counterintuitive regions of the scatter plots 
(Fig. 6) than had negative projection values (Fig. 
7). A counterintuitive change could contribute pos- 
itively to learning if there were compensating ef- 
fects downstream. For example, an increase in an 
EPSP from a sensory neuron to an inhibitory in- 
terneuron could contribute to habituation of a motor 
neuron EPSP. However, this cannot be the case in 
a distributed processing system such as the local 
bending network because any connection from an 
interneuron to a motor neuron contributes to EPSPs 
in response to some patterns of sensory input and 
IPSPs in response to other patterns of sensory input. 
This means that  a change that  ultimately habi- 
tuates the EPSPs seen in a motor neuron in response 
to some patterns of sensory input will sensitize 
IPSPs in same motor neuron seen in response to 
other patterns of sensory input. Thus, in a distrib- 
uted processing network, it is the global effect of a 
change, viewed across all patterns of sensory input, 
that  determines whether it contributes positively to 

the learning. This emphasizes the importance of 
taking the entire input -output  function of a reflex 
into consideration when interpreting the changes in 
synaptic strength found in the cellular analysis of 
learning and memory. 

The model further demonstrates that  an engram 
can be undetectable in practical terms, even for 
modest (50%) changes in output in small inverte- 
brate networks. In both habituation and sensitiza- 
tion, the algorithm established engrams consisting 
of small changes in synaptic strength at almost 
every connection in the network. Such engrams 
present several potential problems for the physio- 
logical analysis of the learning. First, an account of 
half  of the learning requires measurement of the 
change at about half  (240), and sometimes as many 
as about two-thirds (319-331) of the connections in 
the network. Second, even such a partial account of 
the learning requires detection of changes on the 
order of 3-5% of the average synaptic potential in 
the system, whether the model utilizes an upper (20 
pairs) or lower (10 pairs) estimate of the number of 
interneurons in the biological network. Moreover, 
the lack of a correlation between the strength of a 
connection in the naive network and the fraction of 
learning accounted for by the change at that  con- 
nection shows that  focusing on the strongest con- 
nections is not necessarily an effective strategy for 
overcoming the sampling problem in the case of a 
widely distributed engram. 

Relevance to Other Systems 

The similarity between the local bending and 
other networks suggests that  it may not be alone 
in having the capacity to encode memories in min- 
imal engrams. The primary function of interneurons 
in the local bending reflex is to associate with each 
sensory stimulus that  pattern of motor neuron ex- 
citation and inhibition that  is required to withdraw 
from the stimulus (Lockery & Kristan, 1990a). In 
functional terms, the reflex transforms a four-di- 
mensional input vector encoding stimulus location 
into an eight-dimensional output vector encoding 
the associated movement. Moreover, this transfor- 
mation is achieved by a distributed processing 
mechanism in a feedforward network (Lockery & 
Kristan, 1990b). Thus, both functionally and me- 
chanistically, the local bending reflex shares essen- 
tial features of sensorimotor integration (Anastasio 
& Robinson, 1990) or spatial transformation (Zipser 
& Andersen, 1988) in vertebrate systems. Because 
vertebrate networks often contain many more neu- 
rons and connections than the local bending net- 
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work, it is conceivable that  theoretically minimal  
engrams in these instances are even more widely 
distributed. 

The strategy we have taken in this study might  
also be useful in gaining intuition about engrams 
in other distributed systemsl For example, the en- 
grams for facts and events in declarative memory 
tasks may be widely distributed in hippocampal and 
cortical networks (Rolls, 1989). A worst-case anal- 
ysis along the lines of the present study could pro- 
vide an estimate for how difficult it might  be to 
experimentally determine engrams in vertebrate 
brains. 
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