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Abstract

■ We propose a systems-level computational model of the
basal ganglia based closely on known anatomy and physiology.
First, we assume that the thalamic targets, which relay ascend-
ing information to cortical action and planning areas, are toni-
cally inhibited by the basal ganglia. Second, we assume that the
output stage of the basal ganglia, the internal segment of the
globus pallidus (GPi), selects a single action from several com-
peting actions via lateral interactions. Third, we propose that a
form of local working memory exists in the form of reciprocal
connections between the external globus pallidus (GPe) and
the subthalamic nucleus (STN). As a test of the model, the
system was trained to learn a sequence of states that required
the context of previous actions. The striatum, which was as-
sumed to represent a conjunction of cortical states, directly
selected the action in the GP during training. The STN-to-GP
connection strengths were modiªed by an associative learning

rule and came to encode the sequence after 20 to 40 iterations
through the sequence. Subsequently, the system automatically
reproduced the sequence when cued to the ªrst action. The
behavior of the model was found to be sensitive to the ratio
of the striatal-nigral learning rate to the STN-GP learning rate.
Additionally, the degree of striatal inhibition of the globus
pallidus had a signiªcant inºuence on both learning and the
ability to select an action. Low learning rates, which would be
hypothesized to reºect low levels of dopamine, as in Parkin-
son’s disease, led to slow acquisition of contextual information.
However, this could be partially offset by modeling a lesion of
the globus pallidus that resulted in an increase in the gain of
the STN units. The parameter sensitivity of the model is dis-
cussed within the framework of existing behavioral and lesion
data. ■

INTRODUCTION

The basal ganglia are a collection of subcortical struc-
tures that are relatively large in primates, particularly in
humans. Although much is now known about both the
types of neurons that comprise these structures and
their connectivity, relatively little is known about the
overall function of the basal ganglia. Lesion studies both
in lower primates and in humans consistently point to a
role in motor function, yet it is known that several parts
of the basal ganglia receive massive projections from the
prefrontal cortex, suggesting a role in planning and cog-
nition. In this paper, we study an anatomically motivated
computational model that integrates experimental data
from the molecular to the behavioral levels and suggests
a function for each part of the basal ganglia.

Approximately 80% of both the striato-pallidal and
pallido-thalamic neurons are GABAergic, a prevalence of
inhibition that is uncommon in the central nervous sys-
tem, yet no satisfactory explanation exists for this ªnd-
ing. In particular, the direct striato-pallidal-thalamic
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pathway is comprised of two GABA neurons in series
with each other. A fundamental question is what advan-
tage this arrangement confers over a single excitatory
synapse. Findings suggest the maintenance of cortical
topography throughout the basal ganglia, which has
raised the possibility that parallel streams of information
project through the structure, but with relatively little
integration being performed (Alexander, DeLong, &
Strick, 1986). However, it is also known that the input
stage of the basal ganglia, the caudate and putamen
(collectively referred to as the striatum), receives inputs
from almost the entire cortex. There is also a conver-
gence in neuron number from the striatum to the output
stage, the globus pallidus. These two levels of massive
convergence suggest that the basal ganglia is involved in
integrating many types of information within each
stream to either plan or select an action from the many
competing possibilities represented in the cortex.

The primary source of dopamine in the brain is found
in the substantia nigra pars compacta (SNc) and ventral
tegmental area (VTA), both of which have close ties with



the other basal ganglia structures and themselves are
often considered part of the basal ganglia. Dopamine has
been implicated in reward-driven learning (Schultz,
Apicella, & Ljungberg, 1993; Schultz, Apicella, Scarnati, &
Ljungberg, 1992), and the VTA is known to be a self-
stimulation site (Cooper, Bloom, & Roth, 1996). The role
of dopamine seems to be closely related to motor behav-
ior and the need to perform an action in so-called oper-
ant tasks, where rewards are contingent upon acting. Yet
dopamine has also been implicated in cognitive deªcits,
especially in regards to schizophrenia, where one predic-
tor of pharmacological efªcacy of an antipsychotic drug
is its dopamine-receptor afªnity. In this paper, we pro-
pose a model for the role of dopamine that integrates its
role in reinforcement with that of the aforementioned
motor planning.

While the connectivity of the basal ganglia and its
ventral extensions, the nucleus accumbens and ventral
tegmental area, has been well described, there is no
consensus regarding the types of computations these
structures perform. Although the overall function is be-
lieved to be related to planning and executing actions,
especially sequences of actions, it is not clear how the
circuitry could accomplish this. Previous attempts to
assign function to the basal ganglia circuit have primarily
relied upon heuristic arguments without any analytical
or computational analysis to test these ideas. Swerdlow
and Koob (1987) attempted to understand certain as-
pects of psychiatric disease by proposing a model based
on nested loops of activity through the ventral parts of
the basal ganglia. However, their model did not attempt
to characterize the behavior of the proposed circuit.
Several models have been developed that attempt to
integrate the role of cellular reinforcement with action
selection in the basal ganglia (Barto, 1995; Berns &
Sejnowski, 1996; Graybiel, Aosaki, Flaherty, & Kimura,
1994; Houk, Adams, & Barto, 1995; Montague, Dayan, &
Sejnowski, 1996; Wickens & Kotter, 1995); although com-
pelling at the level of classical conditioning, these mod-
els have not yet shown how a complex sequence of
actions could be implemented by the basal ganglia. We
propose in this paper that the basal ganglia project to
cortical areas that implement actions and that they ªlter
multimodal information by selecting previously learned
optimal actions based on the instantaneous cortical state.
We further show how the connectivity is ideally suited
to the production of optimal action sequences. An earlier
model, which was restricted to action selection, has
appeared elsewhere (Berns & Sejnowski, 1996).

MODEL

We modeled the basal ganglia as groups of simpliªed
neurons that corresponded to the various divisions of
the structure. The primary assumption was that the basal
ganglia facilitate the production of action sequences
based on cortical states (for review of this hypothesis,

see Cromwell & Berridge, 1996; Marsden & Obeso,
1994). In order to do this, the basal ganglia must have
both a mechanism that selects competing actions and a
mechanism by which to learn sequences. Thus, our
model demonstrates how the architecture of the basal
ganglia is well suited to the production of action se-
quences and how diffuse reinforcement mechanisms
allow for learning.

Selection Model

The output stage of the basal ganglia, the internal seg-
ment of the globus pallidus (GPi), is known to be almost
wholly GABAergic and tonically active. Thus the GPi
tonically inhibits the target thalamic nuclei (VLm,
VLpc/mc, VLo, CM). Because these nuclei may also gate
ascending information to their cortical targets (motor,
supplementary motor, prefrontal cortices), it is reason-
able that they should be tonically inhibited until the
ascending information is required for action. Further-
more, release from tonic inhibition in the thalamus leads
to a very rapid postinhibitory rebound. Inhibition of the
corresponding GPi neurons may thus lead to a more
rapid response in the thalamus than if they were directly
excited. Such a rapid response would be necessary to
produce rapid sequences of activity. In our model, we
assumed that a mechanism exists in the GPi so that
within a pool of neurons, only one is inhibited at a time,
a form of “loser-take-all” (Berns & Sejnowski, 1996).

Each structure within the basal ganglia was con-
structed of a set of units, each of which represented
some locally distributed function (Figure 1). The striatal
units represented pools of spiny neurons that reºect the
cortical state, which itself is comprised of both external
representations (e.g., parietal areas) and internal, plan-
ning, representations (e.g., frontal cortex). The striatum
mapped the cortical state onto a ªnite set of actions, as
represented in the globus pallidus internus (GPi), or
output layer. The striatal-GPi, or “direct” (Alexander &
Crutcher, 1990), pathway thus allows for the direct map-
ping of the striatal state onto a particular action. How-
ever, if one assumes that the striatum reºects the cortical
state, the direct pathway really maps the cortical activity
onto a ªnite set of possible actions in the globus pallidus,
without any automatic sequencing occurring in the basal
ganglia.

It has been hypothesized that the basal ganglia are
involved in the production of action sequences (Crom-
well & Berridge, 1996). In order to produce a sequence
efªciently, either a short-term memory must exist or the
output state must be fed back to the input layer. There
is evidence for the latter in the form of segregated
cortical-subcortical loops (Alexander et al., 1986; Hed-
reen & DeLong, 1991) that presumably feed back infor-
mation from the globus pallidus to the cortical area from
which the inputs originated. However, the time course
of activity propagation through this loop is probably too
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long to allow for action sequences on the millisecond
time scale. Thus, if the sequencing hypothesis is true,
there must be either local short-term memory or local
feedback within the basal ganglia. In fact, the presence
of local feedback itself could result in short-term mem-
ory.

The STN-GP loop contains recurrent projections
through the GPe (Smith, Wichmann, & DeLong, 1994a),
and we propose that this is a putative site of local
short-term memory. This was modeled by diffuse excita-
tory projections from STN to GP and speciªc inhibitory
connections from GP to STN (Figure 2). The activity of
each STN unit represented the average ªring frequency
of a pool of neurons and was modeled as a leaky inte-
grator:

τ 
dBi(t)

dt
 = −Bi(t) − αGi(t − δ) (1)

where Bi(t) is the activity of the i-th STN unit, Gi(t) is
the activity of the corresponding GP unit (the sign is
negative because it is an inhibitory synapse via the GPe),
α is a constant specifying the magnitude of the inhibi-
tory synapse, τ is the time constant, and δ is the synaptic
delay between the GP and STN units. With α > 1, the
inhibition overrides the STN excitation. The time con-
stant, τ, in Equation 1 represents both the actual mem-
brane time constant and the time constant associated
with activity in the recurrent STN-GPe loop. For the
simulations, a nonlinear discretized version of Equation 1
was used, and the membrane potentials were converted
to normalized representations of ªring frequency by a
sigmoidal function, σ. For each STN unit, this was deter-
mined by

Bi(t) = σ[λBi(t − 1) − (1 − λ) αGi(t − n)] (2)

Figure 1. Overall schematic of the basal ganglia model. The
striatum (STR) was modeled as two types of neurons: a set of ma-
trix neurons projecting to the globus pallidus and a set of strioso-
mal (or patch) neurons projecting to the substantia nigra pars
compacta (SNc) and ventral tegmental area (VTA). The striatal to
globus pallidus pathway diverges with inhibitory projections to
both the external (GPe) and internal (GPi) segments. Similarly, the
subthalamic nucleus (STN) has divergent excitatory projections to
both segments. The GPe also has a recurrent, inhibitory projection
to the STN, which allows for the short-term storage of activity
patterns. The GPi is assumed to be arranged topographically accord-
ing to action and projects to the corresponding thalamic (Thal)
neurons, which are tonically inhibited. The SNc/VTA signal repre-
sented a diffuse, synaptic reinforcement signal, which was given
by the difference between convergent projections from the
striatum and the GPi. The striatal projection represented a predic-
tion of reinforcement, the summed GPi projection represented an
estimate of the degree of match between the STR-GPi and
STN-GPi signals, and the SNc/VTA signal was the difference
between the two.

Figure 2. Detailed schematic of the network model. The globus pal-
lidus has been simpliªed to one set of units. Each unit represented a
pool of related neurons in a particular structure and corresponded
to some discrete action. The GPe was represented by a ªxed projec-
tion to corresponding STN units, and the STN-GPi projection was a
matrix of weights (wij), which was modiªed by the learning rule
given in Equation 6. The striatum was the input layer and repre-
sented a conjunction of cortical states and speciªed which action to
select during learning by inhibiting one of the GP units. The GP
layer speciªed the action to perform, and the GP unit with the mini-
mum activity was assumed to be the one that selected the action. Ad-
ditionally the GP layer projected topographically to the subthalamic
nucleus via the GPe-STN pathway. The STN layer had two units for
each action, one with a short time constant (7 msec) and one with
a long time constant (90 msec). The time constants speciªed the
time interval over which the STN activities changed signiªcantly.
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where

λ = 
τ

τ + ∆t
(3)

and the sigmoid function, with a gain of γ and a bias of
β, is given by

σ[x] = 
1

1 + e−γ (x−β)
(4)

and t now represents the time-step number, n represents
the number of time steps corresponding to the synaptic
delay, and ∆t is the length of the time step. λ ranges from
0 to 1. As shown in Figure 2, the activity of the GP units
was determined by both striatal and STN inputs. The
striatal input was represented by a ªxed unit-to-unit
inhibitory connection, and the STN input was weighted
by the strength of the modiªable connections, w. The
sum of these weighted inputs was then transformed by
a sigmoid function to give the representation of ªring
frequency:

Gi(t) = σ 

∑ 

j

wij  (t)Bj(t) − αSi(t) + ηi




(5)

where wij(t) is the matrix of connection strengths be-
tween STN unit j and GP unit i at time t, Si(t) is the
activity of striatal unit i at time step t, and ηi is the level
of noise drawn from a uniform distribution. The action
ultimately selected was assumed to be represented by
the GP unit with the minimum activity, a form of loser-
take-all (Berns & Sejnowski, 1996). Because the GP inhib-
ited the thalamus, the pool of GP neurons with the
lowest activity corresponded to the thalamic pool with
the maximum activity.

Synaptic Plasticity

Several models of cellular reinforcement have been pro-
posed, all of which rely on the use of a scalar signal to
modify synaptic strengths (Houk et al., 1995; Montague,
Dayan, Person, & Sejnowski, 1995; Montague et al., 1996;
Sutton & Barto, 1990; Wickens & Kotter, 1995). These
models have typically proposed that extrinsic rewards
are mapped onto a structure such as the ventral tegmen-
tal area (VTA), and that dopamine is released in propor-
tion to the extrinsic reward (Houk et al., 1995; Wickens
& Kotter, 1995). Dopamine is then proposed to modify
synaptic strengths. If dopamine modiªes synaptic
strength, it must be released in close temporal proximity
to the activity that precedes it. Problems with previous
models arise because extrinsic reward occurs at times

remote from the activity that produced the action. This
problem can be partially overcome by using a temporal-
difference model, in which dopamine is released in pro-
portion to errors in prediction of reward (Houk et al.,
1995; Montague et al., 1995; Sutton, 1988; Sutton & Barto,
1990), but this still requires either the storage of activity
traces for subsequent modiªcation of synaptic strength
or the use of a diffusible messenger that regulates local
dopamine release (Montague & Sejnowski, 1994).

We propose an alternative learning model. Because of
the dichotomy of information ºow through both the
internal and external segments of the globus pallidus, it
is possible for the striatum to “train” a sequence. The
striatal activity represents a mapping of the cortical state
onto a ªnite set of possible actions, which are imple-
mented in the GPi, and in the untrained state, the
striatum can directly select the action via the direct
pathway. However, the striatum also projects to the GPe,
as does the STN. Because the GPe-STN loop can also
store short-term activity traces, the connection strengths
can be modiªed through associative learning mecha-
nisms such that the GPe-STN can produce a sequence of
states that are learned from the striatum.

We used a modiªed Hebbian learning rule (Hebb,
1949) given by

∆wij  (t) = ρ(e(t)Gi(t) − Si(t))Bj(t) (6)

where ∆wij(t) is the weight change in the connection
from STN unit j to GP unit i at time t, ρ is the learning
rate, e(t) is a scalar error signal from the SNc/VTA at time
t, Gi(t) is the activity of GP unit i, and Bj(t) is the activity
of STN unit j. The ªrst term, ρe(t)Gi(t)Bj(t), represents a
classical Hebbian synapse with presynaptic activity from
STN and postsynaptic activity from GP, modulated by the
error term, e(t). The second term, −ρSi(t)Bj(t), represents
a different form of plasticity that decreases the synaptic
efªcacy when the postsynaptic cell is actively inhibited
by a GABAergic synapse. This is an important difference
because it distinguishes the situations when a postsynap-
tic cell is inactive because of lack of presynaptic activity
from that in which the postsynaptic cell is inactive
because it has been actively inhibited, in this case by the
striatum. In the latter case, any concurrently active exci-
tatory synapse decreases in strength, whereas in the
former case no change occurs.

The error signal, e(t), was generated by the mismatch
between the direct and indirect pathways and was as-
sumed to originate from the dopaminergic neurons in
the substantia nigra (SNc) and ventral tegmental area
(VTA). As shown in Figure 3, the striatum sends a con-
vergent projection to the error unit, and the GP also
sends a convergent projection to the error unit, via a
hypothesized inhibitory neuron. During the training
phase, the striatal inhibition overrides the STN excitation
of GP, which results, for extreme levels of activity, in the
logic table shown in Table 1. Thus only when the STN
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input to a GP cell is high and there is no striatal input
is there signiªcant GP activity, which functions as a type
of inverse coincidence detector. By summing all the GP
activities, a scalar estimate of the total degree of coin-
cidence is produced. A striatal estimate is produced by
summing the vector of striatal activities, weighted by the
connections, vi(t) (Figure 3). Ideally this would match
the estimate obtained from the GP, and the difference
between the two represents the error signal at time
step t:

e(t) = ∑ 
i

(Gi(t) − vi(t)Si(t)) (7)

where vi(t) is the connection strength from striatal unit
i to the error unit. Furthermore, the connection
strengths, vi, are also modiªed by a rule similar to that
of Equation 6, so eventually the error signal tends toward
zero:

∆vi(t) = ρe(t)Si(t) (8)

RESULTS

During the training phase, in the simulation with ªve
units, the activities of the GP units gradually increased
as the STN inputs to them increased (Figure 4). The
winning unit was the one with lowest activation, and
during training, the striatum directly selected the win-
ning unit. Hence at each time step, one, and only one,
unit was off. The STN weights associated with the GP
units increased throughout training until the error had
declined to zero. As shown in Figure 5, the weight of the
connection from the STN unit that corresponded to the
action preceding the one in the GP grew at a slower rate
than the others. This reºected the fact that, on average,
both the pre- and postsynaptic activities for this synapse
were lower than the others.

During training, the internal reward, by which we
mean the scalar measure of the match between the
striatal and GP activities and computed by the sum of
GP activities, steadily increased (Figure 6A). Most of this
effect resulted from the fact that the connection
strengths from the STN were increasing, driving the GP
units to higher activities. Part of the effect was also due
to the increasingly better match between the striatal and
STN inputs to the GP, as illustrated in Table 1. The error
signal, which represented the difference between the
reward predicted by the striatal patch and that of the
actual internal reward (from the sum of the GP activi-
ties), increased during the initial learning phase in which
there was a rapid change in connection strengths. This
steadily decreased as the striatal weights, vi, became
modiªed to predict the amount of reward associated
with a particular striatal state (Figure 6B). As the error
tended toward zero, further changes in connection
strength ceased.

In order to test the model’s ability to reproduce a
sequence trained in the aforementioned manner, the
striatal activity vector corresponding to the initial state
in the training sequence was loaded for one time step
into the striatal units. As shown in Figure 7, the sub-
sequent GP activities reproduced this sequence well;
however, the noise led to an imperfect reproduction as

Figure 3. Schematic of the error/reinforcement mechanism. The
striatum (STR) sends a convergent, inhibitory projection to the
dopamine containing neurons of the substantia nigra compacta
(SNc) and ventral tegmental area (VTA). It is assumed that this pro-
jection arises from the striosomal compartment, and these connec-
tions (vi) were modiªable in strength. The globus pallidus (GP) units
also projected convergently to the SNc/VTA but via an inhibitory in-
terneuron, which effectively reversed the sign of the signal. The GP
projection represented the sum total of the matches between the
GP activity and the striatal activity. According to Table 1, the highest
match occurred when maximal subthalamic nucleus (STN) activa-
tion coincided with minimal striatal inhibition. The output of the
error unit (e), computed as the difference between the weighted
striatal signal and the GP signal, was projected back to both the
STR-SN (vi) and STN-GP (wij) weights where it modulated weight
changes according to Equations 8 and 6, respectively.

Table 1. Logic table for the GP units given hypothetically
extreme values of input from both the STN and striatum.
Striatal inhibition overrides STN excitation, so maximal GP
activation occurs with both maximal STN activity and
minimal striatal activity.

STN Striatal GP

0 0 0

1 0 1

0 1 0

1 1 0
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evidenced by the error at time step 12. The ambiguity
associated with unit 2 is resolved by the differential
activations between the short and long STN units. More
complex sequences, typically of length greater than 10,
exceeded the model’s ability to reliably reproduce them.
More complex ambiguities also resulted in incorrect
reproductions.

The parameter sensitivity revealed that the model is
robust, but beyond certain limits various degradations
occurred. The ratio of STR/GP learning rates signiªcantly
affected performance. Decreasing the ratio to 1 resulted
in persistently high error signals because the STR pre-
diction was slow to learn, which in turn resulted in STN
weights that continued to increase longer. With persist-
ently increasing weights, the model lost the ability to
disambiguate the context of certain activity patterns,
yielding the sequence 1, 2, 5, 1, 2, 5, . . . . With a learning
ratio of 4, the same sequence was produced, but this was
due to the rapid cessation of learning as the striatal
weights rapidly adjusted and the error went to zero

before many of the STN to GP weights had achieved
their correct values. Diminishing the degree of inhibitory
override, by decreasing α to 1, resulted in maximal acti-
vation of all the GP units during training because the
striatum had insufªcient inhibition to directly select an
action. The end result, after training, was a uniform
weight matrix with all weights close to 1. With this
weight matrix, the sequence could not be produced at
all. Changing the gain (γ) and bias (β) parameters, with
gains ranging from 2 to 8 and biases ranging from 0.1,
to 0.2, did not signiªcantly affect the production of
sequences; however, certain combinations of gain and
bias yielded GP activities that were subtly different.

The aforementioned sequence demonstrated how the
model learned a sequence requiring the disambiguation
of context. We also tested the model’s ability to shift
between a random sequence and a repeating 10-item
sequence. This was done, in part, to test the model on a
well-studied behavioral task of procedural learning (Will-
ingham, Nissen, & Bullemer, 1989). The model was pre-

Figure 4. Unit activities during learning the sequence 1, 2, 3, 4, 2, 5. With layers of ªve units each, activities are shown from 0 (black) to 1
(white) for striatum (STR), globus pallidus (GP), and the two subthalamic nucleus layers with short time constant (STN Short) and long time
constant (STN Long). Panel A shows the activity patterns during the initial 20 time steps of training, and Panel B shows the activity patterns af-
ter 200 time steps. Using the parameters given in Table 2, the striatum trained the globus pallidus to produce a sequence of actions. Initially,
the GP activities were low and disorganized because of minimal excitation from the STN. Subsequently, the weights, and hence the GP activi-
ties, increased except for those corresponding to the action that was actively inhibited by the striatum.
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sented with 100 trials of randomly ordered stimuli (1, 2,
3, or 4), then 40 repetitions of the sequence 4-2-3-1-3-2-
4-3-2-1, followed by another 100 trials of random stimuli.
In order to compare the GP output to previously re-
ported reaction times, the GP output was linearly trans-
formed by

R(t) = 1 − 
1
N

 ∑ 
i=1

N

Gi(t) (9)

where N was the number of GP units (4 in this case).
R(t) represented a normalized reaction time at time step
t and ranged from 0 to 1. This linearly scaled the match
between the direct and indirect pathways, with the bet-
ter the match, the lower the reaction time. As shown in
Figure 8A, the reaction time initially declined even with
a random sequence and then rapidly reached a stable
level with the introduction of the repeating sequence. It
stabilized at the value 0.25 because the inherent struc-
ture of the sequence allowed for maximal activation of
all GP units except the one being selected. When the
random sequence was reintroduced, the normalized re-
action time became slightly longer.

We also used this paradigm to model the effects of
Parkinson’s disease and the subsequent improvement of
symptoms from pallidotomy (Figure 8, parts B and C).
Parkinson’s disease was modeled by decreasing the
learning rate (ρ in Equation 6) from 0.025 to 0.005,
reºecting the overall decline in dopamine that is found

in Parkinson’s disease. This resulted in substantially
slower learning, as evidenced by the lower slope in
Figure 8B, but because the GP activations were generally
lower, the effect of noise was also more prominent. The
effects of the decreased learning rate could largely be
ameliorated by increasing the gain of both the GP and
STN units from 4 to 8. As the gain was increased, units
that were previously marginally active became maxi-
mally active, and thus the ªrst term in Equation 6 in-
creased, partially offsetting the decreased learning rate.
This suggests that a potential mechanism for the efªcacy
of pallidotomy is in the alteration of the gain of pools of
neurons in both the STN and GP. One prediction is that
even though the rate of learning is partially restored, the
effect of noise still remains.

Figure 5. Changes in connection strengths, wij, from learning the se-
quence 1, 2, 3, 4, 2, 5. The ªve weights from the ªve STN units with
short time constants to GP unit 2 are shown. The three weights that
increased to saturation levels were from STN units 2, 3, and 5 (i.e.,
those STN units that were not active prior to GP unit 2 being ac-
tive). Conversely, the weights from STN units 1 and 4 did not in-
crease signiªcantly because when these units were active, GP unit 2
was inhibited by the striatum.

Figure 6. Levels of the “reward” (A) from the GP and the error sig-
nal from the SNc/VTA (B) during learning the sequence 1, 2, 3, 4, 2,
5. The reward was computed as the sum of the GP activities and
was proportional to how well the GP activity vector matched the in-
verse of the striatal activity vector. As the system learned to produce
the sequence, the match, and hence the reward, increased. The error
signal, which was computed by Equation 7, represented the differ-
ence between a weighted sum of the striatal activity and the sum of
the GP activity. The weights on the striatal activities were modiªed
by the error signal, and thus the difference ultimately converged to
zero. Note that the variance also decreased.
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DISCUSSION

We have presented a model of the function of the basal
ganglia that was based closely on known neuroanatomy,
and we have demonstrated how such a neuron-level
model can both learn and reproduce action sequences.
This differs from other connectionist models based on
back-propagation (Cleeremans & McClelland, 1991). Al-
though these have been quite successful at modeling
behavioral data, they are not anatomically or physiologi-
cally motivated. Our model attempted to incorporate
several proposed functions in the basal ganglia. Action
selection was assumed to occur through lateral inºu-
ences in the globus pallidus, whereas sequences were
produced via recurrent projections in the GPe-STN loop.
Furthermore, both these proposals were based on the

Figure 7. Globus pallidus activities after learning the sequence 1, 2,
3, 4, 2, 5 and being cued to the beginning of the sequence by in-
hibiting GP unit 1 for one time step. Activities are shown from 0
(black) to 1 (white) for striatum (STR), globus pallidus (GP), and
the two subthalamic nucleus layers with short time constant (STN
Short) and long time constant (STN Long). Because of the STN-GP
weights that were learned, the system subsequently reproduced the
sequence without further input from the striatum. The GP layer, al-
though noisy, correctly produces the sequence with the correct unit
having minimal activity at each time step.

Figure 8. Modeling the effects of Parkinson’s disease (PD) and sub-
sequent pallidotomy. The model was presented with 100 trials of ran-
dom responses followed by 400 trials of stimuli from a ªxed, re-
peating sequence (4-2-3-1-3-2-4-3-2-1) (Willingham et al, 1989) and
then by another 100 random trials. The output of the globus pal-
lidus (GP) units was transformed to represent a normalized reaction
time by a linear mapping and ranged from 0 to 1 (see text). In the
Normal model (ρ = 0.025, gain = 4, bias = 0.2), the GP output be-
came more organized, and consequently reaction time improved
even with the random sequence. When the repeating sequence was
introduced, the GP activation became even more organized, and reac-
tion time improved further until the nonselected GP units were
maximally activated. When the random sequence was reintroduced
(t = 500), the activation pattern was no longer maximal, and the re-
action time worsened slightly. Parkinson’s disease was modeled by
decreasing the overall learning rate (ρ = 0.005, gain = 4, bias = 0.2).
With these parameters, the rate of improvement in reaction time
was slower and showed a greater variance of response for the same
level of noise in the system. Pallidotomy was modeled by increasing
the gain of the GP and STN units (ρ = 0.005, gain = 8, bias = 0.2). Al-
though the variance still remained high, the rate of reaction time im-
provement was partially improved.
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assumption that segregated streams of information ºow
through the basal ganglia (Alexander et al., 1986). We
formalized this segregation by representing each poten-
tial action by a separate unit, a so-called grandmother
cell; however, this was chosen for computational
efªciency. Each of the individual units in our model more
realistically represents a pool of neurons devoted to a
particular action, but the segregation requirement for
pools of neurons remains.

Although there is good evidence for cortical topogra-
phy being maintained throughout the basal ganglia (Al-
exander & Crutcher, 1990; Alexander et al., 1986;
Goldman-Rakic & Selemon, 1986; Parent, 1990), it is also
known that the segregation is not complete. The massive
convergence from striatum to globus pallidus (Wilson,
1990) alone requires that inputs cannot remain com-
pletely segregated (Flaherty & Graybiel, 1994; Hedreen
& DeLong, 1991). However, our model is consistent with
this convergence. We modeled the striatum as an input
stage in which diverse areas of the cortex map onto
subsets of neuron pools. In this manner, diverse sensori-
motor modalities are combined with higher repre-
sentations of both context and timing information from
the prefrontal areas. It is the functional mapping from
striatum to globus pallidus and thalamus that remains
segregated. In other words, the segregation may reºect
the ªnal cortical targets, not the afferents. Work with
retrograde transneuronal transport of herpes simplex
virus injected into the cortical motor areas suggests that
the output stages of the basal ganglia are indeed organ-
ized into discrete channels that correspond to their
targets (Hoover & Strick, 1993).

The basal ganglia have long been assumed to facilitate
action sequencing (Cromwell & Berridge, 1996), and
despite the fact that there is not a great deal of experi-
mental evidence for the sequencing hypothesis, our
model does support this notion. In fact, a review of
human behavioral syndromes associated with various
basal ganglia lesions did not ªnd any reports of sequenc-
ing disturbance (apraxia) (Bhatia & Marsden, 1994). An
alternative, but related, hypothesis is that the basal gan-
glia monitor automatic behavior and alter it in novel
contexts (Marsden & Obeso, 1994). Our model focused
on the role of the pallidal-subthalamic loop in facilitating
sequence production, but the output of this network
may be used in other ways. For example, the sequence
information could be used to monitor the reliability of
sequential predictions maintained elsewhere such as in
the cortex or the striatum. In our model, this actually
occurs in the degree of match between the direct and
indirect pathways.

The primary requirement for automatic sequence pro-
duction was the presence of recurrent connections that
both relay information regarding previous actions and
result in short-term memory. Until recently, the presence
of recurrent projections has not been a prominent
ªnding in basal ganglia anatomy; however, such path-

ways exist locally in the primate pallidal-subthalamic
loop (Smith et al., 1994a; Smith, Wichmann, & DeLong,
1994b). It has previously been argued that the most
obvious recurrent pathway is the thalamo-cortical pro-
jection that presumably closes the cortical-subcortical
loop (Alexander et al., 1986; Berns & Sejnowski, 1996;
Graybiel et al., 1994; Houk et al., 1995; Middleton &
Strick, 1994), but the time taken for impulses to traverse
this loop appears to be on the order of 100 msec (Wil-
son, 1990), which would be too long for rapid automatic
sequencing. Within the basal ganglia, the striatum itself
may have memory properties, and there is evidence that
striatal lesions impair innate grooming sequences (Crom-
well & Berridge, 1996). In slice preparations, striatal cells
show bistable activity, existing in either a low state or a
high, subthreshold, state from which action potentials
irregularly appear (Kawaguchi, Wilson, & Emson, 1989;
Wilson, 1986) and may represent context information for
the conjunction of either cortical states or, in the case
of grooming, other brainstem inputs. Our model does not
directly address the role of the striatum in action se-
quencing other than representing a conjunction of in-
puts, but rather the model demonstrates how the
GP-STN loop could automate sequence learning, which
may be different from the mechanisms for innate se-
quences.

Similarly, we have not attempted to incorporate the
role of the prefrontal cortex (PFC) in the model, even
though it is closely connected to the basal ganglia. A
large body of literature has implicated the prefrontal
cortex, especially the lateral areas, in tasks requiring the
maintenance of information for short periods of time
(Fuster, 1973; Goldman-Rakic, 1987). Both the architec-
ture and size of the prefrontal areas suggest that the PFC
performs far more complex operations than sequencing,
although this may be part of its function. As noted above,
the contribution of the basal ganglia may be in a moni-
toring role, following along with highly automated se-
quences and detecting deviations from the expected
predictions. Another important difference is the time
scale on which these two structures may operate. PFC
neurons can hold information on the order of seconds
(Fuster, 1993), whereas the proposed local memory in
the basal ganglia may be operating on the scale of 10 to
100 msec.

We have proposed that the GPe-STN loop stores short-
term traces of activity and functions as working memory
for the production of action sequences. In a study of
pallidal activity during sequential arm movements,
Mushiake and Strick (1995) found subsets of pallidal
neurons that only displayed activity changes, generally
decreases, during speciªc phases of the movement se-
quence. These neurons did not display the same changes
when the same task was explicitly guided, suggesting a
role in both sequencing and memory. The function of the
subthalamic nucleus has remained elusive and has tradi-
tionally been conceived in terms of tonic excitation of
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the globus pallidus to prevent unwanted activity from
being initiated. Although no direct evidence exists for
the STN’s role in working memory, both in vivo record-
ings and lesion data can be interpreted within this frame-
work. Studies by Wichmann, Bergman, and DeLong
(1994), demonstrated that STN neurons ªre around the
onset of movement, which would be considered a rela-
tively late increase in activity. This would, however, be
consistent with a storage function. Similarly, pallidal ac-
tivity changes have been found to occur too late for
movement initiation (Mink & Thach, 1991). STN lesions
have not consistently been shown to decrease the ªring
rate of GP neurons, which one would expect if its func-
tion were solely tonic excitation, but instead they regu-
larize the GP ªring pattern (Ryan & Sanders, 1993).
Conversely, lesioning the globus pallidus results in an
increase in STN bursting cells (Ryan, Sanders, & Clark,
1992). The latter lesion may represent a large-scale inhi-
bition of the GP, somewhat analagous to the effect of the
striatum on the GP, but on a local scale. The appearance
of bursting would be consistent with a memory storage
function as activity oscillates through the remaining cells
in the GPe-STN loop. STN lesions have been found to
cause a condition in which animals are subject to invol-
untary, large movements of whole limbs (hemiballismus).
Conceptualizing this within the framework of a local
memory function, one would hypothesize that the loss
of local memory that occurs with a subthalamic lesion
results in the loss of context for movements. In this case,
striatal representations cannot be disambiguated with-
out the context of preceding actions and thus may result
in the activation of large pools of neurons, with the
effect being a large involuntary movement when the
intention was a small speciªc one.

A major assumption of our model is that the
dopamine-containing neurons of both the substantia ni-
gra pars compacta (SNc) and the ventral tegmental area
(VTA) modulate synaptic efªcacy in response to intrinsic
reward. There is strong evidence that dopamine plays an
important role in at least extrinsic, reward-driven, learn-
ing. In studies by Schultz et al. (Ljungberg, Apicella, &
Schultz, 1992; Schultz et al., 1993; Schultz et al., 1992), it
has been demonstrated that dopamine neurons of the
VTA ªre transiently during the learning of an operant
task when a reward is given, but that after the task is
learned, the dopamine neurons do not ªre in response
to reward. Furthermore, when reward is withheld after
the task is learned, the dopamine neurons show a tran-
sient depression in activity (Schultz et al., 1993). This
result is consistent with the existence of a projection to
these neurons that contains predictive information re-
garding future reward. In a previous model of me-
sencephalic dopamine systems, it was proposed that
dopamine is released in proportion to a temporal-differ-
ence of reward prediction, but this model required a
complete temporal representation of preceding stimuli
in the form of a tapped-delay line (Montague et al., 1996).

A similar type of representation appears in the present
model in the form of multiple time constants within the
GP-STN loop. Furthermore, we propose that in addition
to ªring in response to extrinsic rewards, the dopamine
neurons also ªre in response to intrinsic rewards, by
which we mean internal representations of how well the
basal ganglia are performing and which we have mod-
eled as originating from the GPi. We hypothesize that the
striatonigral (or in the ventral striatum, the accumbal-
VTA projection) carries a prediction of reward (Barto,
1995; Sutton & Barto, 1990), and because of its known
projections to the dopamine-containing structures, this
arises from the striosomal compartment (Graybiel, 1990;
Houk et al., 1995).

As implemented in our model, the dopamine activity
can be either positive or negative. We have modeled the
role of dopamine as modulatory rather than as either an
excitatory or inhibitory inºuence. From Equation 7, the
quantity e(t) represents this signal and speciªes both the
magnitude and direction by which the synapse efªcacy
changes. Although it is not formalized in the equation,
the tacit assumption in allowing e(t) to be either positive
or negative is that a tonic level of dopamine activity is
required to maintain the synaptic efªcacy. Thus a depres-
sion from maintained activity would lead to a decrease
in synaptic efªcacy, whereas an increase in dopamine
activity would lead to an increase in synaptic efªcacy,
assuming the correlation of both pre- and postsynaptic
activities. There is evidence that the release of dopamine
in the striatum is biphasic and depends on the learned
availability of actions. In an experiment in which mice
were allowed to escape foot shock, there was an in-
crease in the accumbal concentration of the dopamine
metabolite 3-methoxytyramine (3-MT) but a decrease in
3-MT if the mice were not allowed to escape (Cabib &
Puglisi-Allegra, 1994), indicating that dopamine release
both increases and decreases according to learned be-
haviors.

The further requirement imposed by Equation 6 is
that the dopamine-modulated synaptic change only oc-
curs at those synapses where there was a preceding
correlation between pre- and postsynaptic activity. Thus
in our model, dopamine modulates a classical Hebbian
synapse. Presently both long-term potentiation (LTP) and
long-term depression (LTD) are the best candidates for
activity-dependent changes in synaptic efªcacy, although
there may be other mechanisms. The focus for LTP has
centered on the hippocampus and its role in memory,
but both LTP and LTD have also been reported in the
ventral striatum (Calabresi, Maj, Pisani, Mercuri, & Ber-
nardi, 1992; Kombian & Malenka, 1994). Kombian and
Malenka reported that LTP was produced in the core of
the nucleus accumbens by tetanic stimulation of the
cortical input and that the LTP was mediated mainly by
non-NMDA receptors. They further showed that LTD
occurred in the same neurons via the NMDA receptor,
suggesting that depending on the intracellular calcium
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concentration, either LTP or LTD could occur in a single
striatal cell. Dopamine is known to act on intracellular
calcium (Cooper et al., 1996), and the areas of the brain
with the highest calmodulin-dependent phosphodi-
esterase concentration correspond to those areas with
heavy dopaminergic innervation (Polli & Kincaid, 1994).
It may be that dopamine modulates the LTP/LTD behav-
ior of both striatal and pallidal cells by altering the
concentration of intracellular calcium, but it is likely that
other second messenger systems are also involved.

The second component of synaptic plasticity in the
model distinguished between active inhibition of the
postsynaptic cell and inactivity from lack of presynaptic
excitation. The classical Hebbian synapse requires only
coincident pre- and postsynaptic activity without regard
to the different contributors to the postsynaptic poten-
tial. In order to differentiate active inhibition, one must
postulate the existence of a second messenger that
weakens any synapse that is concurrently active. There
is experimental evidence for long-term depression (LTD)
of synaptic activity when presynaptic excitatory im-
pulses are coupled with GABAergic activity (Thiels, Bar-
rionuevo, & Berger, 1994; Wagner & Alger, 1995; Yang,
Connor, & Faber, 1994). The underlying mechanism could
involve decreases in intracellular calcium. In our model,
this effect became signiªcant for reorganization of
weights when changing from one sequence to another.
The model predicts that any process that weakens the
striatal inhibition of the globus pallidus should lead to
an impairment in sequence shifting. Processes that might
do this include striatal degeneration (e.g., Huntington’s
disease and striatal-nigral degeneration). Conversely, a
process that facilitates GABAergic transmission (e.g.,
benzodiazepines) would lead to an increase in sequence
shifting, possibly manifested as an inability to concen-
trate on a task.

The learning and reproduction of a sequence of states
in our model suggests mechanisms by which the primate
basal ganglia may automate action sequences. Beginning
from a state in which the weights were all zero, the
model rapidly converged to the proper set of connec-
tions necessary to reproduce the sequence. However,
altering the ratio of striatal to pallidal learning rates,
which can be roughly interpreted as a differential effect
of dopamine at these sites, led either to a saturation of
the weights (low ratio) or a rapid cessation of learning
(high ratio). In both cases, this impaired the sequence
learning. Diminishing the degree of inhibitory override
from the striatum, which would be analagous to the loss
of spiny neurons in Huntington’s disease, led to the
saturation of all the STN-GP weights. This resulted not
only in the inability to produce any sequence, but it
generated random actions that were driven by the level
of presynaptic noise in the system. This could be
analagous to the choreiform movements typical of Hun-
tington’s disease.

In the model of Parkinson’s disease, a dopamine deªcit

was modeled by decreasing the overall learning rate. As
shown in Figure 8, this resulted in slower weight
changes and consequently an impairment in procedural
learning. Parkinson’s disease patients have been thought
to suffer from deªcits in both motor initiation and shift-
ing as well as cognitive shifting (Cools, Van Den Bercken,
Horstink, Van Spaendonck, & Berger, 1984; Marsden &
Obeso, 1994), although it is not clear whether shifting
deªcits are separate from the overall slowing observed
on motor tasks. The speciªc sequence shifting task that
we modeled was selected to test the model against
existing experimental data in Parkinson’s disease (Pas-
cual-Leone, et al., 1993). Using a linear mapping for R

(Equation 9), the model results closely match the deªcits
observed in Parkinson’s disease. Not only does it capture
the slower rate of improvement, but it also displays the
same increase in variance in R. In the model, the “signal”
was relatively attenuated because of the lower connec-
tion weights and their slow rate of change, and thus the
same level of noise in the system resulted in a larger
variance of R. This model suggests that so-called switch-
ing deªcits may simply be an aspect of slow learning,
which is consistent with studies ªnding no basic switch-
ing deªcit (Brown & Marsden, 1988; Downes, Sharp,
Costall, Sagar, & Howe, 1993). By slow learning, we really
mean a decrease in plasticity at the neuron level, which
would be particularly evident with tasks requiring re-
sponses to new information. This could manifest itself as
a switching deªcit if the task involved new material or
was designed to require rapid learning, or as a prediction
deªcit if external feedback was absent (Flowers, 1978).
Our model also suggests that there is a differential effect
between unlearning a previous response set and learn-
ing a new one. Because striatal inhibition overrides pal-
lidal excitation, connection weights will generally
decrease faster than they increase, and this effect will be
more pronounced when the overall learning rate is de-
creased, as in the model of Parkinson’s disease. This is
consisent with previous ªndings of Parkinsonian impair-
ments of both shifting away from a previously learned
dimension and shifting to a new dimension (Owen, et al.,
1993).

It is curious then that a focal lesion of the globus
pallidus can alleviate some of the symptoms of Parkin-
son’s disease, but there is substantial evidence for the
efªcacy of the pallidotomy procedure in Parkinson’s
disease. It has been proposed that the procedure works
by lesioning a hyperactive globus pallidus, thus restoring
balance (Iacono, et al., 1995; Marsden & Obeso, 1994).
Our model suggests that the pallidotomy lesion, rather
than simply restoring normal tonic inhibition, alters the
input-output relationship in pools of both pallidal and
STN neurons. This partially offsets the decreased learning
rate because of an increased signal-to-noise ratio (i.e.,
better separation of the units that should or should not
be active). Thus those units that are activated with the
increased gain have maximal activity, which maximizes
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the ªrst term in Equation 6 and offsets the decreased
learning rate. By lesioning neurons within a pallidal pool,
the effective gain of the corresponding STN neurons
may be increased by effectively uncoupling them from
each other. If one assumes that each of the neurons
contributing to the pool is fundamentally a binary
(off/on) unit, uncoupling them from each other allows
each individual cell to have a greater signal-to-noise ratio
(i.e., each STN cell is better able to detect signiªcant
inputs because they are not being averaged with other
cells). In an animal model of Parkinson’s disease, when
the STN was lesioned, the percentage of pallidal cells
responding to an external stimulus decreased (Wich-
mann, Bergman, & DeLong, 1994b)

We have proposed a systems-level model of the basal
ganglia that attempts to bridge the gap between the
anatomy and the function of automatic sequence pro-
duction. Local working memory was postulated to exist
in the form of activity patterns in the GPe-subthalamic
feedback loop, to which damage is predicted to cause
incorrect movements because of a loss of ability to
disambiguate the action context on a short time scale.
Furthermore, diseases that alter the striatal inhibition of
the globus pallidus are predicted to either decrease the
ability to shift sequences or cause false shifting. In order
to learn sequences, we have proposed that the striatum
trains the globus pallidus and subthalamic nucleus to
produce sequences of states, and dopamine modulates
the synaptic efªcacy to achieve this. In order to
efªciently shift sequences, a mechanism by which synap-
tic efªcacy is weakened depends on the GABAergic
modulation of long-term depression. Although many de-
tails of the model are based on assumptions, the results
of the model ªt a large body of behavioral and physi-

ological data, and it suggests a framework for conceptu-
alizing basal ganglia function.

METHODS

All simulations were programmed in Mathematica, ver-
sion 2.2 (Wolfram, 1991), running on a 486–33, Pentium-
90, or a Sparc 10. For 100 iterations, the simulation time
ranged from approximately 10 sec on the Sparc 10 to 1
min on the 486–33. Several simulations were performed
with varying numbers of units and sequence complexity.
Values for the equation parameters are shown in Table
2. The learning rate for the STR→VTA weights was 2
times that of the STN→GP weights. Two sets of STN
units were used, one with a time constant, τ, of 7 msec
(Nambu & Llinas, 1994), which according to Equation 3
and a time-step interval of 10 msec, corresponded to a
λ of 0.4; the other set of STN units had a τ of 90 msec,
corresponding to a λ of 0.9. The synaptic delay was taken
to be one time step (n = 1). Each unit in the simulation
represented a pool of neurons, with each pool corre-
sponding to a particular action. As a test of the model,
the sequence (1, 2, 3, 4, 2, 5) was learned using 5 units
in the STR and GP layers and 10 units in the STN layer
(two integration times for each unit). This sequence
requires short-term memory in order to disambiguate
the action following Unit 2. All weights were constrained
to the range 0 to 1. Larger simulations, with up to 10
units were also performed.
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